Combining physics models and Gaussian processes for traffic prediction

Alexandra Würth ${ }^{1}$ (Centre Inria d'Université Côte d'Azur)
Joint work with Mickaël Binois ${ }^{1}$ and Paola Goatin ${ }^{1}$

[^0]
Motivation

Source：https：／／www．larochellegc．com／realisations／analyse－congestion－routiere－avantagee－cloud／

Motivation

Illustration of vehicle trajectory and travel time τ for sample scenario．

Outline

(1) Macroscopic traffic flow models
(2) Calibration approaches
(3) Synthetic traffic data
(4) Traffic estimation and prediction

Outline

(1) Macroscopic traffic flow models
(2) Calibration approaches
(3) Synthetic traffic data
4. Traffic estimation and prediction

Macroscopic traffic flow models

Consideration of averaged and aggregated traffic quantities such as:

- traffic density ρ (number of vehicles per space unit),
- vehicle velocity v (distance covered by vehicles per time unit),
- traffic flow $q=\rho v$ (number of vehicles per time unit).

Macroscopic traffic flow models

Consideration of averaged and aggregated traffic quantities such as:

- traffic density ρ (number of vehicles per space unit),
- vehicle velocity v (distance covered by vehicles per time unit),
- traffic flow $q=\rho v$ (number of vehicles per time unit).

Data can be measured by:

- magnetic loop detectors,
- video recordings,
- wireless sensor networks,
- etc.

Source: https://www.ecm-france.com/en/areas-of-activity/weigh-in-motion/inductive-loop/

Generic Second Order Model (GSOM)

We consider a Generic Second Order traffic flow Model (GSOM) ${ }^{2}$

 consisting in a 2×2 hyperbolic system of conservation laws$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho v)=0, \tag{1}\\
\partial_{t}(\rho w)+\partial_{x}(\rho w v)=0,
\end{array} \quad x \in \mathbb{R}, t>0,\right.
$$

[^1]
Generic Second Order Model (GSOM)

We consider a Generic Second Order traffic flow Model (GSOM) ${ }^{2}$ consisting in a 2×2 hyperbolic system of conservation laws

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho v)=0, \tag{1}\\
\partial_{t}(\rho w)+\partial_{x}(\rho w v)=0,
\end{array} \quad x \in \mathbb{R}, t>0,\right.
$$

where
$\rho=\rho(t, x)$ represents the density,
$w=w(t, x)$ the Lagrangian vehicle property,
$v=\mathcal{V}(\rho, w)$ the average speed of vehicles.

[^2]
Generic Second Order Model (GSOM)

We consider a Generic Second Order traffic flow Model (GSOM) ${ }^{2}$ consisting in a 2×2 hyperbolic system of conservation laws

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho v)=0, \tag{1}\\
\partial_{t}(\rho w)+\partial_{x}(\rho w v)=0,
\end{array} \quad x \in \mathbb{R}, t>0,\right.
$$

where
$\rho=\rho(t, x)$ represents the density,
$w=w(t, x)$ the Lagrangian vehicle property,
$v=\mathcal{V}(\rho, w)$ the average speed of vehicles.

[^3]
Initial Boundary Value Problem (IBVP)

We focus on the Initial Boundary Value Problem ${ }^{3}$ (IBVP) for (1):

$$
\begin{array}{lr}
\left\{\begin{array}{lr}
\partial_{t} \rho+\partial_{x}(\rho v)=0, \\
\partial_{t}(\rho w)+\partial_{x}(\rho w v)=0, & x \in] x_{\text {in }}, x_{\text {out }}[\subset \mathbb{R}, \\
t>0,
\end{array}\right. \\
(\rho, w)(0, x)=\left(\rho_{0}, w_{0}\right)(x), & x \in] x_{\text {in }}, x_{\text {out }}[, \\
(\rho, w)\left(t, x_{\text {in }}\right)=\left(\rho_{\text {in }}, w_{\text {in }}\right)(t), & t>0, \\
(\rho, w)\left(t, x_{\text {out }}\right)=\left(\rho_{\text {out }}, w_{\text {out }}\right)(t), & t>0,
\end{array}
$$

Initial Boundary Value Problem (IBVP)

We focus on the Initial Boundary Value Problem ${ }^{3}$ (IBVP) for (1):

$$
\begin{array}{lr}
\left\{\begin{array}{lr}
\partial_{t} \rho+\partial_{x}(\rho v)=0, \\
\partial_{t}(\rho w)+\partial_{x}(\rho w v)=0,
\end{array}\right. & x \in] x_{\text {in }}, x_{\text {out }}[\subset \mathbb{R}, \\
t>0, \\
(\rho, w)(0, x)=\left(\rho_{0}, w_{0}\right)(x), & x \in] x_{\text {in }}, x_{\text {out }}[,
\end{array}, \begin{array}{lr}
\\
(\rho, w)\left(t, x_{\text {in }}\right)=\left(\rho_{\text {in }}, w_{\text {in }}\right)(t), & t>0,
\end{array}
$$

with values in an invariant domain of the form

$$
\Omega:=\left\{U=(\rho, w) \in \mathbb{R}^{2}: \rho \in\left[0, R\left(w_{\max }\right)\right], w \in\left[w_{\min }, w_{\max }\right]\right\}
$$

for some $0<w_{\min } \leq w_{\max }<+\infty$.

[^4]
Outline

(1) Macroscopic traffic flow models
(2) Calibration approaches
(3) Synthetic traffic data
4. Traffic estimation and prediction

We denote by F the so-called "field" where P, the real process under study, is physically observed.
It is generally assumed that P and F are related by:

$$
y^{F}(t, x)=y^{P}(t, x)+\varepsilon \text { where } \varepsilon \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right) \text {. }
$$

We denote by F the so-called "field" where P, the real process under study, is physically observed.
It is generally assumed that P and F are related by:

$$
y^{F}(t, x)=y^{P}(t, x)+\varepsilon \text { where } \varepsilon \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right) .
$$

1. L^{2} - approach:

Mathematical model, M, represents perfectly the real system:

$$
y^{F}(t, x)=y^{M}\left(t, x, \theta^{*}\right)+\varepsilon
$$

with θ^{*} being the optimal calibration parameter computed by:

$$
\theta^{*}=\underset{\theta}{\operatorname{argmin}} \sum_{(t, x) \in(T, x)}\left|y^{F}(t, x)-y^{M}(t, x, \theta)\right|^{2} .
$$

2. Kennedy-O'Hagan ${ }^{4}$ (KOH) - approach:

Model the inadequacy between the mathematical model and the reality by a discrepancy (bias) term:

$$
\underbrace{y^{F}(t, x)}_{\text {observation }}=\underbrace{y^{M}\left(t, x, \theta^{*}\right)}_{\text {simulation }}+\underbrace{\tilde{b}\left(t, x, \theta^{*}\right)}_{\text {discrepancy }}+\underbrace{\varepsilon}_{\text {obs. error }}
$$

[^5]2. Kennedy-O'Hagan ${ }^{4}(\mathrm{KOH})$ - approach:

Model the inadequacy between the mathematical model and the reality by a discrepancy (bias) term:

$$
\underbrace{y^{F}(t, x)}_{\text {observation }}=\underbrace{y^{M}\left(t, x, \theta^{*}\right)}_{\text {simulation }}+\underbrace{\tilde{b}\left(t, x, \theta^{*}\right)}_{\text {discrepancy }}+\underbrace{\varepsilon}_{\text {obs. error }}
$$

where
$\mathrm{b}_{\mathrm{n}}=\tilde{b}+\varepsilon \sim \mathcal{N}\left(0, \mathrm{~K}_{\mathrm{n}}(\lambda)\right)$ with covariance $\mathrm{K}_{\mathrm{n}}(\lambda)=\sigma^{2}\left(\mathrm{C}_{\mathrm{n}}\left(I_{1}, I_{2}\right)+g \mathrm{I}_{\mathrm{n}}\right)$, hyperparameters $\lambda=\left(\sigma^{2}, I_{1}, l_{2}, g\right)$, n number of observations and

[^6]2. Kennedy-O'Hagan ${ }^{4}$ (KOH) - approach:

Model the inadequacy between the mathematical model and the reality by a discrepancy (bias) term:

$$
\underbrace{y^{F}(t, x)}_{\text {observation }}=\underbrace{y^{M}\left(t, x, \theta^{*}\right)}_{\text {simulation }}+\underbrace{\tilde{b}\left(t, x, \theta^{*}\right)}_{\text {discrepancy }}+\underbrace{\varepsilon}_{\text {obs. error }}
$$

where
$\mathrm{b}_{\mathrm{n}}=\tilde{b}+\varepsilon \sim \mathcal{N}\left(0, \mathrm{~K}_{\mathrm{n}}(\lambda)\right)$ with covariance $\mathrm{K}_{\mathrm{n}}(\lambda)=\sigma^{2}\left(\mathrm{C}_{\mathrm{n}}\left(I_{1}, I_{2}\right)+g \mathrm{I}_{\mathrm{n}}\right)$, hyperparameters $\lambda=\left(\sigma^{2}, l_{1}, l_{2}, g\right)$, n number of observations and
θ^{*} the optimal calibration parameter computed by:

$$
\theta^{*}=\underset{\theta}{\operatorname{argmax}} \frac{1}{\sqrt{(2 \pi)^{n}\left|\mathrm{~K}_{\mathrm{n}}(\lambda)\right|}} \exp \left(-\frac{1}{2} \mathrm{~b}_{\mathrm{n}}(\theta)^{\top}\left(\mathrm{K}_{\mathrm{n}}(\lambda)\right)^{-1} \mathrm{~b}_{\mathrm{n}}(\theta)\right) .
$$

[^7]
Gaussian process modeling

Given: n bias-observations $\mathrm{b}_{\mathrm{n}}=b\left(\mathcal{X}_{n}\right)$ at $\mathcal{X}_{n}=\left(\left(t_{1}, x_{1}\right), \ldots,\left(t_{n}, x_{n}\right)\right)$ \rightarrow at \hat{n} new locations $\hat{\mathcal{X}}_{\hat{n}}=\left(\left(\hat{t}_{1}, \hat{x}_{1}\right), \ldots,\left(\hat{t}_{\hat{n}}, \hat{x}_{\hat{n}}\right)\right)$ it holds:

$$
\begin{aligned}
& \mathrm{b}\left(\hat{\mathcal{X}}_{\hat{n}}\right) \mid \mathrm{b}_{\mathrm{n}} \sim \mathcal{N}\left(m_{n}\left(\hat{\mathcal{X}}_{\hat{n}}\right), s_{n}^{2}\left(\hat{\mathcal{X}}_{\hat{n}}, \hat{\mathcal{X}}_{\hat{n}}\right)\right), \\
& m_{n}\left(\hat{\mathcal{X}}_{\hat{n}}\right):=\mathbb{E}\left[\mathrm{b}\left(\hat{\mathcal{X}}_{\hat{n}}\right) \mid \mathrm{b}_{n}\right]=\mathrm{k}_{\mathrm{n}}\left(\hat{\mathcal{X}}_{\hat{n}}\right)^{\top} \mathrm{K}_{\mathrm{n}}^{-1} \mathrm{~b}_{\mathrm{n}}, \\
& s_{n}^{2}\left(\hat{\mathcal{X}}_{\hat{n}}, \hat{\mathcal{X}}_{\hat{n}}\right):=\mathbb{C o v}\left[\mathrm{b}\left(\hat{\mathcal{X}}_{\hat{n}}\right), \mathrm{b}\left(\hat{\mathcal{X}}_{\hat{n}}\right) \mid \mathrm{b}_{\mathrm{n}}\right]=k\left(\hat{\mathcal{X}}_{\hat{n}}, \hat{\mathcal{X}}_{\hat{n}}\right)-\mathrm{k}_{n}\left(\hat{\mathcal{X}}_{\hat{n}}\right)^{\top} \mathrm{K}_{\mathrm{n}}^{-1} \mathrm{k}_{\mathrm{n}}\left(\hat{\mathcal{X}}_{\hat{n}}\right)
\end{aligned}
$$

where $k(\cdot, \cdot)=\sigma^{2} \operatorname{Corr}(\mathrm{~b}(\cdot), \mathrm{b}(\cdot)), \mathrm{k}_{n}\left(\hat{\mathcal{X}}_{\hat{n}}\right):=\left(k\left(\hat{\mathcal{X}}_{\hat{n}}^{(j)}, \mathcal{X}_{n}^{(i)}\right)\right)_{1 \leq j \leq \hat{n}, 1 \leq i \leq n}$.

Gaussian process modeling

Given: n bias-observations $\mathrm{b}_{\mathrm{n}}=b\left(\mathcal{X}_{n}\right)$ at $\mathcal{X}_{n}=\left(\left(t_{1}, x_{1}\right), \ldots,\left(t_{n}, x_{n}\right)\right)$ \rightarrow at \hat{n} new locations $\hat{\mathcal{X}}_{\hat{n}}=\left(\left(\hat{t}_{1}, \hat{x}_{1}\right), \ldots,\left(\hat{t}_{\hat{n}}, \hat{x}_{\hat{n}}\right)\right)$ it holds:

$$
\begin{aligned}
& \mathrm{b}\left(\hat{\mathcal{X}}_{\hat{n}}\right) \mid \mathrm{b}_{\mathrm{n}} \sim \mathcal{N}\left(m_{n}\left(\hat{\mathcal{X}}_{\hat{n}}\right), s_{n}^{2}\left(\hat{\mathcal{X}}_{\hat{n}}, \hat{\mathcal{X}}_{\hat{n}}\right)\right), \\
& m_{n}\left(\hat{\mathcal{X}}_{\hat{n}}\right):=\mathbb{E}\left[\mathrm{b}\left(\hat{\mathcal{X}}_{\hat{n}}\right) \mid \mathrm{b}_{n}\right]=\mathrm{k}_{\mathrm{n}}\left(\hat{\mathcal{X}}_{\hat{n}}\right)^{\top} \mathrm{K}_{\mathrm{n}}^{-1} \mathrm{~b}_{\mathrm{n}}, \\
& s_{n}^{2}\left(\hat{\mathcal{X}}_{\hat{n}}, \hat{\mathcal{X}}_{\hat{n}}\right):=\mathbb{C o v}\left[\mathrm{b}\left(\hat{\mathcal{X}}_{\hat{n}}\right), \mathrm{b}\left(\hat{\mathcal{X}}_{\hat{n}}\right) \mid \mathrm{b}_{\mathrm{n}}\right]=k\left(\hat{\mathcal{X}}_{\hat{n}}, \hat{\mathcal{X}}_{\hat{n}}\right)-\mathrm{k}_{n}\left(\hat{\mathcal{X}}_{\hat{n}}\right)^{\top} \mathrm{K}_{\mathrm{n}}^{-1} \mathrm{k}_{\mathrm{n}}\left(\hat{\mathcal{X}}_{\hat{n}}\right)
\end{aligned}
$$

where $k(\cdot, \cdot)=\sigma^{2} \operatorname{Corr}(\mathrm{~b}(\cdot), \mathrm{b}(\cdot)), \mathrm{k}_{n}\left(\hat{\mathcal{X}}_{\hat{n}}\right):=\left(k\left(\hat{\mathcal{X}}_{\hat{n}}^{(j)}, \mathcal{X}_{n}^{(i)}\right)\right)_{1 \leq j \leq \hat{n}, 1 \leq i \leq n}$.

Gaussian kernel correlation matrix

Standard formula:

$$
\operatorname{Corr}\left(\mathrm{b}(t, x), \mathrm{b}\left(t^{\prime}, x^{\prime}\right)\right)=\exp \left(-\frac{\left(t-t^{\prime}\right)^{2}}{l_{1}^{2}}\right) \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l_{2}^{2}}\right)
$$

[^8]
Gaussian kernel correlation matrix

Standard formula:

$$
\operatorname{Corr}\left(\mathrm{b}(t, x), \mathrm{b}\left(t^{\prime}, x^{\prime}\right)\right)=\exp \left(-\frac{\left(t-t^{\prime}\right)^{2}}{l_{1}^{2}}\right) \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l_{2}^{2}}\right)
$$

Integral extension ${ }^{5}$ (due to time data averages):

[^9]
Gaussian kernel correlation matrix

Standard formula:

$$
\operatorname{Corr}\left(\mathrm{b}(t, x), \mathrm{b}\left(t^{\prime}, x^{\prime}\right)\right)=\exp \left(-\frac{\left(t-t^{\prime}\right)^{2}}{l_{1}^{2}}\right) \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l_{2}^{2}}\right)
$$

Integral extension ${ }^{5}$ (due to time data averages):

$$
\begin{aligned}
& \operatorname{Corr}\left(\frac{1}{\Delta t} \int_{t}^{t+\Delta t} \mathrm{~b}(s, x) \mathrm{ds}, \mathrm{~b}\left(t^{\prime}, x^{\prime}\right)\right)=\left(\frac{1}{\Delta t} \int_{t}^{t+\Delta t} \exp \left(-\frac{\left(s-t^{\prime}\right)^{2}}{l_{1}^{2}}\right) \mathrm{ds}\right) \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l_{2}^{2}}\right) \\
& \operatorname{Corr}\left(\frac{1}{\Delta t} \int_{t}^{t+\Delta t} \mathrm{~b}(s, x) \mathrm{ds}, \frac{1}{\Delta t^{\prime}} \int_{t^{\prime}}^{t^{\prime}+\Delta t^{\prime}} \mathrm{b}\left(s^{\prime}, x\right) \mathrm{ds}^{\prime}\right) \\
& \quad=\left(\frac{1}{\Delta t^{\prime}} \frac{1}{\Delta t} \int_{t^{\prime}}^{t^{\prime}+\Delta t^{\prime} t+\Delta t} \int_{t} \exp \left(-\frac{\left(s-s^{\prime}\right)^{2}}{l_{1}^{2}}\right) \mathrm{ds} \mathrm{ds} s^{\prime}\right) \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l_{2}^{2}}\right)
\end{aligned}
$$

[^10]
Gaussian kernel correlation matrix

Standard formula:

$$
\operatorname{Corr}\left(\mathrm{b}(t, x), \mathrm{b}\left(t^{\prime}, x^{\prime}\right)\right)=\exp \left(-\frac{\left(t-t^{\prime}\right)^{2}}{l_{1}^{2}}\right) \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l_{2}^{2}}\right)
$$

Integral extension ${ }^{5}$ (due to time data averages):
$\operatorname{Corr}\left(\frac{1}{\Delta t} \int_{t}^{t+\Delta t} \mathrm{~b}(s, x) \mathrm{ds}, \mathrm{b}\left(t^{\prime}, x^{\prime}\right)\right)=\left(\frac{1}{\Delta t} \int_{t}^{t+\Delta t} \exp \left(-\frac{\left(s-t^{\prime}\right)^{2}}{l_{1}^{2}}\right) \mathrm{ds}\right) \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l_{2}^{2}}\right)$
$\operatorname{Corr}\left(\frac{1}{\Delta t} \int_{t}^{t+\Delta t} \mathrm{~b}(s, x) \mathrm{ds}, \frac{1}{\Delta t^{\prime}} \int_{t^{\prime}}^{t^{\prime}+\Delta t^{\prime}} \mathrm{b}\left(s^{\prime}, x\right) \mathrm{ds}^{\prime}\right)$

$$
=\left(\frac{1}{\Delta t^{\prime}} \frac{1}{\Delta t} \int_{t^{\prime}}^{t^{\prime}} \int_{t} \exp \left(-\frac{\left(s-s^{\prime}\right)^{2}}{l_{1}^{2}}\right) \mathrm{ds} d s^{\prime}\right) \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{I_{2}^{2}}\right)
$$

\rightarrow Slight improvement observed

[^11]
Alternative calibration approach

M. Plumlee,

Bayesian calibration of inexact computer models Journal of the American Statistical Association, 2017

Alternative calibration approach

围
M. Plumlee,

Bayesian calibration of inexact computer models Journal of the American Statistical Association, 2017

- Orthogonality condition on bias function and mathematical model
- Requires derivative of simulator: δy^{M}

Alternative calibration approach

M. Plumlee,

Bayesian calibration of inexact computer models Journal of the American Statistical Association, 2017

- Orthogonality condition on bias function and mathematical model
- Requires derivative of simulator: δy^{M}
- Correlation matrix:

$$
C_{n}{ }^{\text {plum }}=C_{n}-C_{n} \delta y^{M}\left(\left(\delta y^{M}\right)^{\top} C_{n} \delta y^{M}\right)^{-1}\left(\delta y^{M}\right)^{\top} C_{n}
$$

Alternative calibration approach

M. Plumlee,

Bayesian calibration of inexact computer models Journal of the American Statistical Association, 2017

- Orthogonality condition on bias function and mathematical model
- Requires derivative of simulator: δy^{M}
- Correlation matrix:

$$
C_{n}{ }^{\text {plum }}=C_{n}-C_{n} \delta y^{M}\left(\left(\delta y^{M}\right)^{\top} C_{n} \delta y^{M}\right)^{-1}\left(\delta y^{M}\right)^{\top} C_{n}
$$

\rightarrow No improvement observed (only approximation for derivative available)

Outline

(1) Macroscopic traffic flow models
(2) Calibration approaches
(3) Synthetic traffic data

Generation of traffic data by a microscopic simulator SUMO^{6} :

${ }^{6}$ Lopez et al. Microscopic Traffic Simulation using SUMO, 2018

Generation of traffic data by a microscopic simulator SUMO^{6} :

- 10 km long road stretch,
- 3 lanes, no ramps,
- speed limit: $100 \mathrm{~km} / \mathrm{h}$,
- different classes of vehicle types (normal, fast and slow cars).

[^12]Generation of traffic data by a microscopic simulator SUMO ${ }^{6}$:

- 10 km long road stretch,
- 3 lanes, no ramps,
- speed limit: $100 \mathrm{~km} / \mathrm{h}$,
- different classes of vehicle types (normal, fast and slow cars).

Artificial traffic scenario

[^13]Generation of traffic data by a microscopic simulator SUMO ${ }^{6}$:

- 10 km long road stretch,
- 3 lanes, no ramps,
- speed limit: $100 \mathrm{~km} / \mathrm{h}$,
- different classes of vehicle types (normal, fast and slow cars).

Artificial traffic scenario

[^14]
with $\theta_{\mathrm{L}^{2}}^{*}=(83,48,328)$.

Outline

(1) Macroscopic traffic flow models
(2) Calibration approaches
(3) Synthetic traffic data
(4) Traffic estimation and prediction

Traffic estimation.

Traffic estimation.

Traffic estimation.

Traffic prediction.

Traffic estimation.

Traffic prediction.

GP prediction

Standard approach: predictive mean formula

GP prediction

Standard approach: predictive mean formula Extension: integrate PDE into GP modeling

GP prediction

Standard approach: predictive mean formula Extension: integrate PDE into GP modeling

Rong et al,
AutoIP: A United Framework to Integrate Physics into Gaussian Processes International Conference on Machine Learning, 2022
\rightarrow Variational posterior distribution with large set of hyperparameters

GP prediction

Standard approach: predictive mean formula Extension: integrate PDE into GP modeling

Rong et al,
AutoIP: A United Framework to Integrate Physics into Gaussian Processes International Conference on Machine Learning, 2022
\rightarrow Variational posterior distribution with large set of hyperparameters
Chen et al,
APIK: Active Physics-Informed Kriging Model with Partial Differential Equations
SIAM/ASA Journal on Uncertainty Quantification, 2022
\rightarrow Specific form for nonlinear PDE necessary

GP prediction

Standard approach: predictive mean formula Extension: integrate PDE into GP modeling

Rong et al,
AutoIP: A United Framework to Integrate Physics into Gaussian Processes International Conference on Machine Learning, 2022
\rightarrow Variational posterior distribution with large set of hyperparameters
Chen et al,
APIK: Active Physics-Informed Kriging Model with Partial Differential Equations
SIAM/ASA Journal on Uncertainty Quantification, 2022
\rightarrow Specific form for nonlinear PDE necessary

Chen et al,
Solving and Learning Nonlinear PDEs with Gaussian Processes
Journal of Computational Physics, 2021
\rightarrow Convergence proof for strong PDE solution

GP prediction

Standard approach: predictive mean formula Extension: integrate PDE into GP modeling

围 Long et al,
AutoIP: A United Framework to Integrate Physics into Gaussian Processes International Conference on Machine Learning, 2022
\rightarrow Variational posterior distribution with large set of hyperparameters
围
Chen et al,
APIK: Active Physics-Informed Kriging Model with Partial Differential Equations
SIAM/ASA Journal on Uncertainty Quantification, 2022
\rightarrow Specific form for nonlinear PDE necessaryChen et al,
Solving and Learning Nonlinear PDEs with Gaussian Processes
Journal of Computational Physics, 2021
\rightarrow Convergence proof for strong PDE solution
On going work: consideration of PDE constraint in hyperparameter optimization

Travel time error

Consideration of $N=875$ vehicle trajectories starting every 10 seconds.

Travel time error

Consideration of $N=875$ vehicle trajectories starting every 10 seconds.

The travel time error is given by:

$$
\mathrm{E}^{\top}=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\tau_{i}-\hat{\tau}_{i}\right)^{2}}
$$

where $\hat{\tau}_{i}$ denotes the estimated (or predicted) travel time.

Traffic estimation.

Traffic estimation.

Traffic prediction.

Conclusion

- Proposition of a statistical framework for traffic state reconstruction
- Introduction of a discrepancy term to compensate model limitations
A. Würth, M. Binois, P. Goatin and S. Göttlich,

Data driven uncertainty quantification in macroscopic traffic flow models Advances in Computational Mathematics, 2022

Conclusion

- Proposition of a statistical framework for traffic state reconstruction
- Introduction of a discrepancy term to compensate model limitations
A. Würth, M. Binois, P. Goatin and S. Göttlich, Data driven uncertainty quantification in macroscopic traffic flow models Advances in Computational Mathematics, 2022
- Extension of framework for traffic state prediction
- Better performance when combining physics and GP in traffic prediction

Conclusion

- Proposition of a statistical framework for traffic state reconstruction
- Introduction of a discrepancy term to compensate model limitations

國 A. Würth, M. Binois, P. Goatin and S. Göttlich, Data driven uncertainty quantification in macroscopic traffic flow models Advances in Computational Mathematics, 2022

- Extension of framework for traffic state prediction
- Better performance when combining physics and GP in traffic prediction

Outlook

- Consideration of real traffic data
- Improvement of boundary loop detector predictions

Thank you

Any questions?

Alexandra Würth
Centre Inria d'Université Côte d'Azur, France alexandra.wuerth@inria.fr

Travel time error

Traffic estimation.

Traffic prediction.

Two methods of GP prediction

Definition (Weak entropy solution)

A function $W \in \mathrm{~L}^{\infty}\left((] 0, T[\times] x_{\text {in }}, x_{\text {out }}[) ; \mathcal{W}\right)$ is a weak entropy solution to the IBVP if

- for any entropy-flux pair $(\mathcal{E}, \mathcal{Q})$ and any test function $\phi \in \mathrm{C}_{\mathrm{c}}^{\infty}\left((]-\infty, T[\times] x_{\text {in }}, x_{\text {out }}[) ; \mathbb{R} \geq 0\right)$, it holds

$$
\int_{0}^{T} \int_{x_{\text {in }}}^{x_{\text {out }}}\left\{\mathcal{E}(u(W)) \partial_{t} \phi+\mathcal{Q}(u(W)) \partial_{x} \phi\right\} \mathrm{dxdt}+\int_{x_{\text {in }}}^{x_{\text {out }}} \mathcal{E}\left(u\left(W_{0}(x)\right)\right) \phi(0, x) \mathrm{dx} \geq 0 ;
$$

- for any boundary entropy pair (α, β) and any $\gamma(t) \in \mathrm{L}^{1}(] 0, T\left[; \mathbb{R}_{\geq 0}\right)$ it holds

$$
\begin{aligned}
& \underset{x \rightarrow x_{\text {in }}+}{\operatorname{ess}} \lim _{0}^{T} \beta\left(u(W(t, x)), u\left(W_{\text {in }}(t)\right)\right) \gamma(t) \mathrm{dt} \leq 0, \\
& \underset{x \rightarrow x_{\text {out }}-}{\operatorname{ess} \lim } \int_{0}^{T} \beta\left(u(W(t, x)), u\left(W_{\text {out }}(t)\right)\right) \gamma(t) \mathrm{dt} \geq 0
\end{aligned}
$$

Definition (Boundary entropy pair)

An entropy pair $\left(\alpha\left(u_{1}, u_{2}\right), \beta\left(u_{1}, u_{2}\right)\right), u_{1}, u_{2} \in \mathbb{R}^{2}$ is called a boundary entropy pair ${ }^{7}$ if for every fixed $u_{2} \in \mathbb{R}^{2}$

$$
\alpha\left(u_{2}, u_{2}\right)=\beta\left(u_{2}, u_{2}\right)=\nabla_{1} \alpha\left(u_{2}, u_{2}\right)=(0,0)^{\top} .
$$

The entropy boundary conditions with respect to the left (resp. right) boundary state $W_{B}=\left(v_{B}, W_{B}\right)$ and for $j \in\{1,2\}$ reads as follows:

$$
\beta^{j}\left(W, W_{B}\right):=\mathcal{Q}^{j}(W)-\mathcal{Q}^{j}\left(W_{B}\right)-\nabla_{\mu} \mathcal{E}^{j}\left(W_{B}\right) \cdot\left(f(W)-f\left(W_{B}\right)\right) \leq(\geq) 0 .
$$

We consider the following families of entropy-flux pairs ${ }^{8}$:

$$
\begin{aligned}
& \mathcal{E}^{1}(u(W))= \begin{cases}0 & \text { if } v \leq \bar{v}, \\
1-\frac{\mathcal{R}(v, w)}{\mathcal{R}(\bar{v}, w)} & \text { if } v>\bar{v},\end{cases} \\
& \mathcal{Q}^{1}(u(W))= \begin{cases}0 & \text { if } v \leq \bar{v}, \\
\bar{v}-\frac{v \mathcal{R}(v, w)}{\mathcal{R}(\bar{r}, w)} & \text { if } v>\bar{v}\end{cases}
\end{aligned}
$$

for any $\bar{v} \in\left[0, w_{\text {max }}\right]$ and 9

$$
\begin{aligned}
& \mathcal{E}^{2}(u(W))=\mathcal{R}(v, w)|\bar{w}-w| \\
& \mathcal{Q}^{2}(u(W))=\mathcal{R}(v, w) v|\bar{w}-w|
\end{aligned}
$$

for any $\bar{w} \in\left[w_{\min }, w_{\max }\right]$.

[^15]
[^0]: ${ }^{1}$ Université Côte d'Azur, Inria, CNRS, LJAD, 2004 route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France.
 E-mail: \{alexandra.wuerth, mickael.binois, paola.goatin\}@inria.fr

[^1]: ${ }^{2}$ Lebacque, J.-P.,Mammar, S. and Salem, H. H., Generic second order traffic flow modelling, $2007 \square$

[^2]: ${ }^{2}$ Lebacque, J.-P.,Mammar, S. and Salem, H. H., Generic second order traffic flow modelling, $2007 \square$

[^3]: ${ }^{2}$ Lebacque, J.-P.,Mammar, S. and Salem, H. H., Generic second order traffic flow modelling, $2007 \square$

[^4]: ${ }^{3}$ Goatin, P. and Würth, A., The initial boundary value problem for second order traffic flow models with vacuum: existence of entropy weak solutions, submitted 2022

[^5]: ${ }^{4}$ Kennedy, M. C and O'Hagan, A., Bayesian calibration of computer models, 2001

[^6]: ${ }^{4}$ Kennedy, M. C and O'Hagan, A., Bayesian calibration of computer models, 2001

[^7]: ${ }^{4}$ Kennedy, M. C and O'Hagan, A., Bayesian calibration of computer models, 2001

[^8]: ${ }^{5}$ Osborne M. A., Bayesian Gaussian processes for sequential prediction, optimisation and quadrature, 2010

[^9]: ${ }^{5}$ Osborne M. A., Bayesian Gaussian processes for sequential prediction, optimisation and quadrature, 2010

[^10]: 5^{5} Osborne M. A., Bayesian Gaussian processes for sequential prediction, optimisation and quadrature, 2010

[^11]: ${ }^{5}$ Osborne M. A., Bayesian Gaussian processes for sequential prediction, optimisation and quadrature, 2010

[^12]: ${ }^{6}$ Lopez et al. Microscopic Traffic Simulation using SUMO, 2018

[^13]: ${ }^{6}$ Lopez et al. Microscopic Traffic Simulation using SUMO, 2018

[^14]: $6_{\text {Lopez et al. Microscopic Traffic Simulation using SUMO, } 2018}$

[^15]: ${ }^{8}$ Andreianov, B.,Donadello, C. and Rosini, M. D., A second-order model for vehicular traffics with local point constraints on the flow, 2016 ${ }^{9}$ Serre, D., Systemes de Lois de Conservation, 1996

