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Motivation

Source: https://www.larochellegc.com/realisations/analyse-congestion-routiere-avantagee-cloud/

Illustration of vehicle trajectory and travel time τ for sample scenario.
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Macroscopic traffic flow models

Macroscopic traffic flow models

Consideration of averaged and aggregated traffic quantities such as:

traffic density ρ (number of vehicles per space unit),

vehicle velocity v (distance covered by vehicles per time unit),

traffic flow q = ρv (number of vehicles per time unit).

Data can be measured by:

magnetic loop detectors,

video recordings,

wireless sensor networks,

etc.

Source: https://www.ecm-france.com/en/areas-of-activity/weigh-in-
motion/inductive-loop/

Alexandra Würth 04/04/2023 5 / 27



Macroscopic traffic flow models

Macroscopic traffic flow models

Consideration of averaged and aggregated traffic quantities such as:

traffic density ρ (number of vehicles per space unit),

vehicle velocity v (distance covered by vehicles per time unit),

traffic flow q = ρv (number of vehicles per time unit).

Data can be measured by:

magnetic loop detectors,

video recordings,

wireless sensor networks,

etc.

Source: https://www.ecm-france.com/en/areas-of-activity/weigh-in-
motion/inductive-loop/

Alexandra Würth 04/04/2023 5 / 27



Macroscopic traffic flow models GSOM model

Generic Second Order Model (GSOM)

We consider a Generic Second Order traffic flow Model (GSOM)2

consisting in a 2× 2 hyperbolic system of conservation laws

{
∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρwv) = 0,
x ∈ R, t > 0, (1)

where

ρ = ρ(t, x) represents the density,

w = w(t, x) the Lagrangian vehicle property,

v = V(ρ,w) the average speed of vehicles.
ρ

V

R
V(ρ,w) = w

(
1− exp

(
C
V

(1− R
ρ

)
))

2
Lebacque, J.-P.,Mammar, S. and Salem, H. H., Generic second order traffic flow modelling, 2007

Alexandra Würth 04/04/2023 6 / 27



Macroscopic traffic flow models GSOM model

Generic Second Order Model (GSOM)

We consider a Generic Second Order traffic flow Model (GSOM)2

consisting in a 2× 2 hyperbolic system of conservation laws

{
∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρwv) = 0,
x ∈ R, t > 0, (1)

where

ρ = ρ(t, x) represents the density,

w = w(t, x) the Lagrangian vehicle property,

v = V(ρ,w) the average speed of vehicles.

ρ

V

R
V(ρ,w) = w

(
1− exp

(
C
V

(1− R
ρ

)
))

2
Lebacque, J.-P.,Mammar, S. and Salem, H. H., Generic second order traffic flow modelling, 2007

Alexandra Würth 04/04/2023 6 / 27



Macroscopic traffic flow models GSOM model

Generic Second Order Model (GSOM)

We consider a Generic Second Order traffic flow Model (GSOM)2

consisting in a 2× 2 hyperbolic system of conservation laws

{
∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρwv) = 0,
x ∈ R, t > 0, (1)

where

ρ = ρ(t, x) represents the density,

w = w(t, x) the Lagrangian vehicle property,

v = V(ρ,w) the average speed of vehicles.
ρ

V

R
V(ρ,w) = w

(
1− exp

(
C
V

(1− R
ρ

)
))

2
Lebacque, J.-P.,Mammar, S. and Salem, H. H., Generic second order traffic flow modelling, 2007

Alexandra Würth 04/04/2023 6 / 27



Macroscopic traffic flow models GSOM model

Initial Boundary Value Problem (IBVP)

We focus on the Initial Boundary Value Problem3 (IBVP) for (1):{
∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρwv) = 0,
x ∈ ]xin, xout [⊂ R, t > 0,

(ρ,w)(0, x) = (ρ0,w0)(x), x ∈ ]xin, xout [,

(ρ,w)(t, xin) = (ρin,win)(t), t > 0,

(ρ,w)(t, xout) = (ρout ,wout)(t), t > 0,

with values in an invariant domain of the form

Ω :=
{
U = (ρ,w) ∈ R2 : ρ ∈ [0,R(wmax)],w ∈ [wmin,wmax ]

}
for some 0 < wmin ≤ wmax < +∞.

3
Goatin, P. and Würth, A., The initial boundary value problem for second order traffic flow models with vacuum: existence of entropy weak solutions,

submitted 2022
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Calibration approaches

We denote by F the so-called “field” where P, the real process under study, is
physically observed.

It is generally assumed that P and F are related by:

yF (t, x) = yP(t, x) + ε where ε ∼ N (0, σ2
ε).

1. L2 - approach:

Mathematical model, M, represents perfectly the real system:

yF (t, x) = yM(t, x , θ∗) + ε

with θ∗ being the optimal calibration parameter computed by:

θ∗ = argmin
θ

∑
(t,x)∈(T ,X )

∣∣yF (t, x)− yM(t, x , θ)
∣∣2.

Alexandra Würth 04/04/2023 9 / 27



Calibration approaches

We denote by F the so-called “field” where P, the real process under study, is
physically observed.

It is generally assumed that P and F are related by:

yF (t, x) = yP(t, x) + ε where ε ∼ N (0, σ2
ε).

1. L2 - approach:

Mathematical model, M, represents perfectly the real system:

yF (t, x) = yM(t, x , θ∗) + ε

with θ∗ being the optimal calibration parameter computed by:

θ∗ = argmin
θ

∑
(t,x)∈(T ,X )

∣∣yF (t, x)− yM(t, x , θ)
∣∣2.

Alexandra Würth 04/04/2023 9 / 27



Calibration approaches

2. Kennedy-O’Hagan4 (KOH) - approach:

Model the inadequacy between the mathematical model and the reality by a
discrepancy (bias) term:

yF (t, x)︸ ︷︷ ︸
observation

= yM(t, x , θ∗)︸ ︷︷ ︸
simulation

+ b̃(t, x , θ∗)︸ ︷︷ ︸
discrepancy

+ ε︸︷︷︸
obs. error

where

bn = b̃ + ε ∼ N
(
0,Kn(λ)

)
with covariance Kn(λ) = σ2

(
Cn(l1, l2) + g In

)
,

hyperparameters λ = (σ2, l1, l2, g), n number of observations and

θ∗ the optimal calibration parameter computed by:

θ∗ = argmax
θ

1√
(2π)n|Kn(λ)|

exp

(
−1

2
bn(θ)>

(
Kn(λ)

)−1
bn(θ)

)
.

4
Kennedy, M. C and O’Hagan, A., Bayesian calibration of computer models, 2001
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Calibration approaches

Gaussian process modeling

Given: n bias-observations bn = b(Xn) at Xn =
(
(t1, x1), . . . , (tn, xn)

)
→ at n̂ new locations X̂n̂ =

(
(t̂1, x̂1), . . . , (t̂n̂, x̂n̂)

)
it holds:

b(X̂n̂) | bn ∼ N (mn(X̂n̂), s2
n(X̂n̂, X̂n̂)),

mn(X̂n̂) := E[b(X̂n̂)|bn] = kn(X̂n̂)>Kn
−1bn,

s2
n(X̂n̂, X̂n̂) := Cov [b(X̂n̂), b(X̂n̂)|bn] = k(X̂n̂, X̂n̂)− kn(X̂n̂)>Kn

−1kn(X̂n̂)

where k(·, ·) = σ2Corr
(
b(·), b(·)

)
, kn(X̂n̂) := (k(X̂ (j)

n̂ ,X (i)
n ))1≤j≤n̂,1≤i≤n.

Alexandra Würth 04/04/2023 11 / 27



Calibration approaches

Gaussian process modeling

Given: n bias-observations bn = b(Xn) at Xn =
(
(t1, x1), . . . , (tn, xn)

)
→ at n̂ new locations X̂n̂ =

(
(t̂1, x̂1), . . . , (t̂n̂, x̂n̂)

)
it holds:

b(X̂n̂) | bn ∼ N (mn(X̂n̂), s2
n(X̂n̂, X̂n̂)),

mn(X̂n̂) := E[b(X̂n̂)|bn] = kn(X̂n̂)>Kn
−1bn,

s2
n(X̂n̂, X̂n̂) := Cov [b(X̂n̂), b(X̂n̂)|bn] = k(X̂n̂, X̂n̂)− kn(X̂n̂)>Kn

−1kn(X̂n̂)

where k(·, ·) = σ2Corr
(
b(·), b(·)

)
, kn(X̂n̂) := (k(X̂ (j)

n̂ ,X (i)
n ))1≤j≤n̂,1≤i≤n.

Alexandra Würth 04/04/2023 11 / 27



Calibration approaches

Gaussian kernel correlation matrix

Standard formula:

Corr
(
b(t, x), b(t′, x ′)

)
= exp

(
− (t − t′)2

l2
1

)
exp

(
− (x − x ′)2

l2
2

)

Integral extension5 (due to time data averages):

Corr
( 1

∆t

t+∆t∫
t

b(s, x) ds, b(t′, x ′)
)

=

 1

∆t

t+∆t∫
t

exp

(
− (s − t′)2

l2
1

)
ds

 exp

(
− (x − x ′)2

l2
2

)

Corr
( 1

∆t

t+∆t∫
t

b(s, x)ds,
1

∆t′

t′+∆t′∫
t′

b(s ′, x)ds′
)

=

 1

∆t′
1

∆t

t′+∆t′∫
t′

t+∆t∫
t

exp

(
− (s − s ′)2

l2
1

)
ds ds′

 exp

(
− (x − x ′)2

l2
2

)

→ Slight improvement observed

5
Osborne M. A., Bayesian Gaussian processes for sequential prediction, optimisation and quadrature, 2010
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Calibration approaches

Alternative calibration approach

M. Plumlee,
Bayesian calibration of inexact computer models
Journal of the American Statistical Association, 2017

Orthogonality condition on bias function and mathematical model

Requires derivative of simulator: δyM

Correlation matrix:

Cn
plum = Cn − Cn δy

M
(

(δyM)> Cn δy
M
)−1

(δyM)>Cn

→ No improvement observed (only approximation for derivative available)
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Synthetic traffic data
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Synthetic traffic data

Generation of traffic data by a microscopic simulator SUMO6:

10 km long road stretch,

3 lanes, no ramps,

speed limit: 100 km/h,

different classes of vehicle types (normal, fast and slow cars).

Artificial traffic scenario with θ∗L2 = (83, 48, 328).

6
Lopez et al. Microscopic Traffic Simulation using SUMO, 2018
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Traffic estimation and prediction
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Traffic estimation and prediction

Traffic estimation.

Traffic prediction.
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Traffic estimation and prediction

GP prediction

Standard approach: predictive mean formula

Extension: integrate PDE into GP modeling

Long et al,

AutoIP: A United Framework to Integrate Physics into Gaussian Processes

International Conference on Machine Learning, 2022

→ Variational posterior distribution with large set of hyperparameters

Chen et al,

APIK: Active Physics-Informed Kriging Model with Partial Differential Equations

SIAM/ASA Journal on Uncertainty Quantification, 2022

→ Specific form for nonlinear PDE necessary

Chen et al,

Solving and Learning Nonlinear PDEs with Gaussian Processes

Journal of Computational Physics, 2021

→ Convergence proof for strong PDE solution

On going work: consideration of PDE constraint in hyperparameter optimization
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Traffic estimation and prediction

Travel time error

Consideration of N = 875 vehicle trajectories starting every 10 seconds.

The travel time error is given by:

ET =

√√√√ 1

N

N∑
i=1

(τi − τ̂i )2

where τ̂i denotes the estimated (or predicted) travel time.
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Thank you

Any questions?

Alexandra Würth
Centre Inria d’Université Côte d’Azur, France
alexandra.wuerth@inria.fr
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Appendix

Definition (Weak entropy solution)

A function W ∈ L∞
(

(]0,T [× ]xin, xout [) ;W
)

is a weak entropy solution to the IBVP if

for any entropy-flux pair (E ,Q) and any test function
φ ∈ C∞c

(
(]−∞,T [× ]xin, xout [) ;R≥0

)
, it holds∫ T

0

∫ xout

xin

{E(u(W ))∂tφ+Q(u(W ))∂xφ} dxdt +

∫ xout

xin

E(u(W0(x)))φ(0, x)dx ≥ 0;

for any boundary entropy pair (α, β) and any γ(t) ∈ L1 (]0,T [;R≥0) it holds

ess lim
x→xin+

∫ T

0

β(u(W (t, x)), u(Win(t)))γ(t)dt ≤ 0,

ess lim
x→xout−

∫ T

0

β(u(W (t, x)), u(Wout(t)))γ(t)dt ≥ 0.

Definition (Boundary entropy pair)

An entropy pair (α(u1, u2), β(u1, u2)), u1, u2 ∈ R2 is called a boundary entropy pair7 if for
every fixed u2 ∈ R2

α (u2, u2) = β (u2, u2) = ∇1α (u2, u2) = (0, 0)>.

7
Chen, G. and Frid, H., Divergence Measure Fields and Hyperbolic Conservation Laws, 1999
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Appendix

The entropy boundary conditions with respect to the left (resp. right) boundary
state WB = (vB ,wB) and for j ∈ {1, 2} reads as follows:

βj(W ,WB) := Qj(W )−Qj(WB)−∇uE j(WB) · (f (W )− f (WB)) ≤ (≥)0.

We consider the following families of entropy-flux pairs8:

E1(u(W )) =

{
0 if v ≤ v̄ ,

1− R(v,w)
R(v̄,w)

if v > v̄ ,

Q1(u(W )) =

{
0 if v ≤ v̄ ,

v̄ − vR(v,w)
R(v̄,w)

if v > v̄

for any v̄ ∈ [0,wmax ] and9

E2(u(W )) = R(v ,w)|w̄ − w |

Q2(u(W )) = R(v ,w)v |w̄ − w |
for any w̄ ∈ [wmin,wmax ].

8
Andreianov, B.,Donadello, C. and Rosini, M. D., A second-order model for vehicular traffics with local point constraints on the flow, 2016

9
Serre, D., Systemes de Lois de Conservation, 1996
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