April 04, 2023 Mascot-Num 2023, Le Croisic

Combining physics models and Gaussian processes for traffic prediction

Alexandra Würth¹ (Centre Inria d'Université Côte d'Azur) Joint work with Mickaël Binois¹ and Paola Goatin¹

Innin

¹Université Côte d'Azur, Inria, CNRS, LJAD, 2004 route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France. E-mail: {alexandra.vuerth, mickael.binois, paola.goatin}@inria.fr < □ > < ∂ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ >

Motivation

Source: https://www.larochellegc.com/realisations/analyse-congestion-routiere-avantagee-cloud/

◆□→ ◆□→ ◆三→ ◆三→

- 2

Motivation

JAG.

Outline

1 Macroscopic traffic flow models

2 Calibration approaches

Synthetic traffic data

4 Traffic estimation and prediction

Outline

Macroscopic traffic flow models

Calibration approaches

3 Synthetic traffic data

4 Traffic estimation and prediction

Macroscopic traffic flow models

Consideration of averaged and aggregated traffic quantities such as:

- traffic **density** ρ (number of vehicles per space unit),
- vehicle velocity v (distance covered by vehicles per time unit),
- traffic flow $q = \rho v$ (number of vehicles per time unit).

イロト イヨト イヨト

Macroscopic traffic flow models

Consideration of averaged and aggregated traffic quantities such as:

- traffic **density** ρ (number of vehicles per space unit),
- vehicle velocity v (distance covered by vehicles per time unit),
- traffic flow $q = \rho v$ (number of vehicles per time unit).

Data can be **measured** by:

- magnetic loop detectors,
- video recordings,
- wireless sensor networks,
- etc.

Source: https://www.ecm-france.com/en/areas-of-activity/weigh-inmotion/inductive-loop/

イロト イヨト イヨト

Generic Second Order Model (GSOM)

We consider a Generic Second Order traffic flow Model (GSOM)² consisting in a 2×2 hyperbolic system of conservation laws

$$\begin{cases} \partial_t \rho + \partial_x (\rho v) = 0, \\ \partial_t (\rho w) + \partial_x (\rho w v) = 0, \end{cases} \qquad x \in \mathbb{R}, \ t > 0, \tag{1}$$

²Lebacque, J.-P.,Mammar, S. and Salem, H. H., Generic second order traffic flow modelling, 2007 🗆 + () +

GSOM model

Generic Second Order Model (GSOM)

We consider a Generic Second Order traffic flow Model (GSOM)² consisting in a 2×2 hyperbolic system of conservation laws

$$\begin{cases} \partial_t \rho + \partial_x (\rho v) = 0, \\ \partial_t (\rho w) + \partial_x (\rho w v) = 0, \end{cases} \qquad x \in \mathbb{R}, \ t > 0, \tag{1}$$

where

 $\rho = \rho(t, x)$ represents the density,

w = w(t, x) the Lagrangian vehicle property,

 $v = \mathcal{V}(\rho, w)$ the average speed of vehicles.

² Lebacque, J.-P.,Mammar, S. and Salem, H. H., Generic second order traffic flow modelling, 2007 🗆 🕨 🗧 🕨 🤞 📃 🕨

GSOM model

Generic Second Order Model (GSOM)

We consider a Generic Second Order traffic flow Model (GSOM)² consisting in a 2×2 hyperbolic system of conservation laws

$$\begin{cases} \partial_t \rho + \partial_x (\rho v) = 0, \\ \partial_t (\rho w) + \partial_x (\rho w v) = 0, \end{cases} \qquad x \in \mathbb{R}, \ t > 0, \tag{1}$$

where

ho =
ho(t, x) represents the density,

w = w(t, x) the Lagrangian vehicle property,

 $v = \mathcal{V}(\rho, w)$ the average speed of vehicles.

GSOM model

Initial Boundary Value Problem (IBVP)

We focus on the Initial Boundary Value Problem³ (IBVP) for (1):

$$\begin{cases} \partial_t \rho + \partial_x (\rho v) = 0, \\ \partial_t (\rho w) + \partial_x (\rho w v) = 0, \end{cases} & x \in]x_{in}, x_{out}[\subset \mathbb{R}, t > 0, \\ (\rho, w)(0, x) = (\rho_0, w_0)(x), \\ (\rho, w)(t, x_{in}) = (\rho_{in}, w_{in})(t), \\ (\rho, w)(t, x_{out}) = (\rho_{out}, w_{out})(t), \end{cases} & t > 0, \end{cases}$$

³Goatin, P. and Würth, A., The initial boundary value problem for second order traffic flow models with vacuum: existence of entropy weak solutions, (日) submitted 2022

Initial Boundary Value Problem (IBVP)

We focus on the Initial Boundary Value Problem³ (IBVP) for (1):

$$\begin{cases} \partial_t \rho + \partial_x (\rho v) = 0, \\ \partial_t (\rho w) + \partial_x (\rho w v) = 0, \end{cases} & x \in]x_{in}, x_{out}[\subset \mathbb{R}, t > 0, \\ (\rho, w)(0, x) = (\rho_0, w_0)(x), \\ (\rho, w)(t, x_{in}) = (\rho_{in}, w_{in})(t), \\ (\rho, w)(t, x_{out}) = (\rho_{out}, w_{out})(t), \end{cases} & t > 0, \end{cases}$$

with values in an invariant domain of the form

$$\Omega := \left\{ U = (\rho, w) \in \mathbb{R}^2 \colon \rho \in [0, R(w_{max})], w \in [w_{min}, w_{max}] \right\}$$

for some $0 < w_{min} \leq w_{max} < +\infty$.

³Goatin, P. and Würth, A., The initial boundary value problem for second order traffic flow models with vacuum: existence of entropy weak solutions, (日) submitted 2022

Outline

Macroscopic traffic flow models

2 Calibration approaches

3 Synthetic traffic data

4 Traffic estimation and prediction

We denote by F the so-called "field" where P, the real process under study, is physically observed.

It is generally assumed that P and F are related by:

$$y^{F}(t,x) = y^{P}(t,x) + \varepsilon$$
 where $\varepsilon \sim \mathcal{N}(0,\sigma_{\varepsilon}^{2})$.

We denote by F the so-called "**field**" where P, the **real process** under study, is physically observed.

It is generally assumed that P and F are related by:

$$y^{F}(t,x)=y^{P}(t,x)+arepsilon$$
 where $arepsilon\sim\mathcal{N}(0,\sigma_{arepsilon}^{2}).$

1. L^2 - approach:

Mathematical model, *M*, represents perfectly the real system:

 $y^F(t,x) = y^M(t,x,\theta^*) + \varepsilon$

with θ^* being the **optimal calibration parameter** computed by:

$$\theta^* = \operatorname*{argmin}_{\theta} \sum_{(t,x)\in(\mathcal{T},X)} \left| y^F(t,x) - y^M(t,x,\theta) \right|^2.$$

イロト イヨト イヨト イヨト

2. Kennedy-O'Hagan⁴ (KOH) - approach:

Model the **inadequacy** between the **mathematical model** and the **reality** by a **discrepancy** (bias) term:

 $\underbrace{y^{F}(t,x)}_{\text{theoretion}} = \underbrace{y^{M}(t,x,\theta^{*})}_{\text{simulation}} + \underbrace{\tilde{b}(t,x,\theta^{*})}_{\text{discrepancy}} + \underbrace{\varepsilon}_{\text{obs. error}}$

⁴Kennedy, M. C and O'Hagan, A., *Bayesian calibration of computer models*, 2001

2. Kennedy-O'Hagan⁴ (KOH) - approach:

Model the **inadequacy** between the **mathematical model** and the **reality** by a **discrepancy** (bias) term:

where

$$\begin{split} \mathbf{b}_{\mathsf{n}} &= \tilde{b} + \varepsilon \sim \mathcal{N}\big(\mathbf{0}, \mathsf{K}_{\mathsf{n}}(\lambda)\big) \quad \text{with covariance} \quad \mathsf{K}_{\mathsf{n}}(\lambda) = \sigma^2\big(\mathsf{C}_{\mathsf{n}}(\mathit{l}_1, \mathit{l}_2) + g\mathsf{I}_{\mathsf{n}}\big), \\ \text{hyperparameters} \ \lambda &= (\sigma^2, \mathit{l}_1, \mathit{l}_2, g), \ \textit{n} \text{ number of observations and} \end{split}$$

⁴Kennedy, M. C and O'Hagan, A., *Bayesian calibration of computer models*, 2001

2. Kennedy-O'Hagan⁴ (KOH) - approach:

Model the **inadequacy** between the **mathematical model** and the **reality** by a **discrepancy** (bias) term:

where

$$\begin{split} & \mathsf{b}_\mathsf{n} = \tilde{b} + \varepsilon \sim \mathcal{N}\big(\mathsf{0},\mathsf{K}_\mathsf{n}(\lambda)\big) \quad \text{with covariance} \quad \mathsf{K}_\mathsf{n}(\lambda) = \sigma^2\big(\mathsf{C}_\mathsf{n}(\mathit{l}_1,\mathit{l}_2) + g\mathsf{I}_\mathsf{n}\big), \\ & \mathsf{hyperparameters} \ \lambda = (\sigma^2,\mathit{l}_1,\mathit{l}_2,g), \ n \text{ number of observations and} \end{split}$$

 θ^* the **optimal calibration parameter** computed by:

$$\theta^* = \operatorname*{argmax}_{\theta} \frac{1}{\sqrt{(2\pi)^n |\mathsf{K_n}(\lambda)|}} \exp{\left(-\frac{1}{2}\mathsf{b_n}(\theta)^\top \big(\mathsf{K_n}(\lambda)\big)^{-1} \mathsf{b_n}(\theta)\right)}.$$

イロト 不得 トイヨト イヨト

⁴Kennedy, M. C and O'Hagan, A., Bayesian calibration of computer models, 2001

Gaussian process modeling

Given: *n* bias-observations $b_n = b(\mathcal{X}_n)$ at $\mathcal{X}_n = ((t_1, x_1), \dots, (t_n, x_n))$ \rightarrow at \hat{n} new locations $\hat{\mathcal{X}}_{\hat{n}} = ((\hat{t}_1, \hat{x}_1), \dots, (\hat{t}_{\hat{n}}, \hat{x}_{\hat{n}}))$ it holds:

$$\begin{split} \mathsf{b}(\hat{\mathcal{X}}_{\hat{n}}) \mid \mathsf{b}_{\mathsf{n}} &\sim \mathcal{N}(m_{n}(\hat{\mathcal{X}}_{\hat{n}}), \mathsf{s}_{n}^{2}(\hat{\mathcal{X}}_{\hat{n}}, \hat{\mathcal{X}}_{\hat{n}})), \\ m_{n}(\hat{\mathcal{X}}_{\hat{n}}) &:= \mathbb{E}[\mathsf{b}(\hat{\mathcal{X}}_{\hat{n}})|\mathsf{b}_{\mathsf{n}}] = \mathsf{k}_{\mathsf{n}}(\hat{\mathcal{X}}_{\hat{n}})^{\top}\mathsf{K}_{\mathsf{n}}^{-1}\mathsf{b}_{\mathsf{n}}, \\ \mathsf{s}_{n}^{2}(\hat{\mathcal{X}}_{\hat{n}}, \hat{\mathcal{X}}_{\hat{n}}) &:= \mathbb{C}ov[\mathsf{b}(\hat{\mathcal{X}}_{\hat{n}}), \mathsf{b}(\hat{\mathcal{X}}_{\hat{n}})|\mathsf{b}_{\mathsf{n}}] = k(\hat{\mathcal{X}}_{\hat{n}}, \hat{\mathcal{X}}_{\hat{n}}) - \mathsf{k}_{n}(\hat{\mathcal{X}}_{\hat{n}})^{\top}\mathsf{K}_{\mathsf{n}}^{-1}\mathsf{k}_{\mathsf{n}}(\hat{\mathcal{X}}_{\hat{n}}) \\ \end{split}$$
where $k(\cdot, \cdot) = \sigma^{2}\mathbb{C}orr(\mathsf{b}(\cdot), \mathsf{b}(\cdot)), \ \mathsf{k}_{n}(\hat{\mathcal{X}}_{\hat{n}}) := (k(\hat{\mathcal{X}}_{\hat{n}}^{(j)}, \mathcal{X}_{n}^{(j)}))_{1 \leq j \leq \hat{n}, 1 \leq i \leq n}. \end{split}$

イロト イヨト イヨト イヨト

Gaussian process modeling

Given: *n* bias-observations $b_n = b(\mathcal{X}_n)$ at $\mathcal{X}_n = ((t_1, x_1), \dots, (t_n, x_n))$ \rightarrow at \hat{n} new locations $\hat{\mathcal{X}}_{\hat{n}} = ((\hat{t}_1, \hat{x}_1), \dots, (\hat{t}_{\hat{n}}, \hat{x}_{\hat{n}}))$ it holds:

$$\begin{split} \mathbf{b}(\hat{\mathcal{X}}_{\hat{n}}) \mid \mathbf{b}_{n} \sim \mathcal{N}(m_{n}(\hat{\mathcal{X}}_{\hat{n}}), s_{n}^{2}(\hat{\mathcal{X}}_{\hat{n}}, \hat{\mathcal{X}}_{\hat{n}})), \\ m_{n}(\hat{\mathcal{X}}_{\hat{n}}) &:= \mathbb{E}[\mathbf{b}(\hat{\mathcal{X}}_{\hat{n}}) \mid \mathbf{b}_{n}] = \mathbf{k}_{n}(\hat{\mathcal{X}}_{\hat{n}})^{\top} \mathbf{K}_{n}^{-1} \mathbf{b}_{n}, \\ s_{n}^{2}(\hat{\mathcal{X}}_{\hat{n}}, \hat{\mathcal{X}}_{\hat{n}}) &:= \mathbb{C}ov[\mathbf{b}(\hat{\mathcal{X}}_{\hat{n}}), \mathbf{b}(\hat{\mathcal{X}}_{\hat{n}}) \mid \mathbf{b}_{n}] = k(\hat{\mathcal{X}}_{\hat{n}}, \hat{\mathcal{X}}_{\hat{n}}) - \mathbf{k}_{n}(\hat{\mathcal{X}}_{\hat{n}})^{\top} \mathbf{K}_{n}^{-1} \mathbf{k}_{n}(\hat{\mathcal{X}}_{\hat{n}}) \end{split}$$

where $k(\cdot, \cdot) = \sigma^2 \mathbb{C}orr(\mathbf{b}(\cdot), \mathbf{b}(\cdot)), \ \mathbf{k}_n(\hat{\mathcal{X}}_{\hat{n}}) := (k(\hat{\mathcal{X}}_{\hat{n}}^{(j)}, \mathcal{X}_n^{(i)}))_{1 \le j \le \hat{n}, 1 \le i \le n}$.

Standard formula:

$$\mathbb{C}orr(\mathbf{b}(t,x),\mathbf{b}(t',x')) = \exp\left(-\frac{(t-t')^2}{l_1^2}\right)\exp\left(-\frac{(x-x')^2}{l_2^2}\right)$$

⁵ Osborne M. A., Bayesian Gaussian processes for sequential prediction, optimisation and quadrature; 2010 🗇 🕨 < 🗄 🕨 🚊 🔊 🤉 🖓

Standard formula:

$$\mathbb{C}orr(\mathbf{b}(t,x),\mathbf{b}(t',x')) = \exp\left(-\frac{(t-t')^2}{l_1^2}\right)\exp\left(-\frac{(x-x')^2}{l_2^2}\right)$$

Integral extension⁵ (due to time data averages):

Standard formula:

$$\mathbb{C}orr(\mathbf{b}(t,x),\mathbf{b}(t',x')) = \exp\left(-\frac{(t-t')^2}{l_1^2}\right)\exp\left(-\frac{(x-x')^2}{l_2^2}\right)$$

Integral extension⁵ (due to time data averages):

$$\begin{split} &\mathbb{C}orr\Big(\frac{1}{\Delta t}\int\limits_{t}^{t+\Delta t}\mathbf{b}(s,x)\,\mathrm{d}s,\ \mathbf{b}(t',x')\Big) = \left(\frac{1}{\Delta t}\int\limits_{t}^{t+\Delta t}\exp\left(-\frac{(s-t')^2}{l_1^2}\right)\,\mathrm{d}s\right)\exp\left(-\frac{(x-x')^2}{l_2^2}\right)\\ &\mathbb{C}orr\Big(\frac{1}{\Delta t}\int\limits_{t}^{t+\Delta t}\mathbf{b}(s,x)\mathrm{d}s,\ \frac{1}{\Delta t'}\int\limits_{t'}^{t'+\Delta t'}\mathbf{b}(s',x)\mathrm{d}s'\Big)\\ &= \left(\frac{1}{\Delta t'}\frac{1}{\Delta t}\int\limits_{t'}^{t'+\Delta t'}\int\limits_{t}^{t+\Delta t'}\exp\left(-\frac{(s-s')^2}{l_1^2}\right)\,\mathrm{d}s\,\,\mathrm{d}s'\right)\exp\left(-\frac{(x-x')^2}{l_2^2}\right) \end{split}$$

Standard formula:

$$\mathbb{C}orr(\mathbf{b}(t,x),\mathbf{b}(t',x')) = \exp\left(-\frac{(t-t')^2}{l_1^2}\right)\exp\left(-\frac{(x-x')^2}{l_2^2}\right)$$

Integral extension⁵ (due to time data averages):

$$\mathbb{C}orr\left(\frac{1}{\Delta t}\int_{t}^{t+\Delta t} b(s,x) \,\mathrm{ds}, \ b(t',x')\right) = \left(\frac{1}{\Delta t}\int_{t}^{t+\Delta t} \exp\left(-\frac{(s-t')^2}{l_1^2}\right) \,\mathrm{ds}\right) \exp\left(-\frac{(x-x')^2}{l_2^2}\right)$$
$$\mathbb{C}orr\left(\frac{1}{\Delta t}\int_{t}^{t+\Delta t} b(s,x) \,\mathrm{ds}, \ \frac{1}{\Delta t'}\int_{t'}^{t'+\Delta t'} b(s',x) \,\mathrm{ds'}\right)$$
$$= \left(\frac{1}{\Delta t'}\frac{1}{\Delta t}\int_{t'}^{t'+\Delta t'} \int_{t}^{t+\Delta t'} \exp\left(-\frac{(s-s')^2}{l_1^2}\right) \,\mathrm{ds} \,\mathrm{ds'}\right) \exp\left(-\frac{(x-x')^2}{l_2^2}\right)$$

 \rightarrow Slight improvement observed

Alexandra Würth

04/04/2023 12/27

⁵Osborne M. A., Bayesian Gaussian processes for sequential prediction, optimisation and quadrature 2010 🗇 🕨 < 🖹 🕨 🚊 🔊 🤉 🔇

M. Plumlee,

Bayesian calibration of inexact computer models Journal of the American Statistical Association, 2017

04/04/2023

13/27

M. Plumlee, Bayesian calibration of inexact computer models Journal of the American Statistical Association, 2017

- Orthogonality condition on bias function and mathematical model
- Requires derivative of simulator: δy^M

M. Plumlee, Bayesian calibration of inexact computer models Journal of the American Statistical Association, 2017

• Orthogonality condition on bias function and mathematical model

- Requires derivative of simulator: δy^M
- Correlation matrix:

$$\mathsf{C}_{\mathsf{n}}^{\mathrm{plum}} = \mathsf{C}_{\mathsf{n}} - \mathsf{C}_{\mathsf{n}} \,\, \delta y^{\mathcal{M}} \Big((\delta y^{\mathcal{M}})^{\top} \,\, \mathsf{C}_{\mathsf{n}} \,\, \delta y^{\mathcal{M}} \Big)^{-1} (\delta y^{\mathcal{M}})^{\top} \mathsf{C}_{\mathsf{n}}$$

M. Plumlee, Bayesian calibration of inexact computer models Journal of the American Statistical Association, 2017

• Orthogonality condition on bias function and mathematical model

- Requires derivative of simulator: δy^M
- Correlation matrix:

$$\mathsf{C}_{\mathsf{n}}^{\mathrm{plum}} = \mathsf{C}_{\mathsf{n}} - \mathsf{C}_{\mathsf{n}} \,\, \delta y^{\mathcal{M}} \Big((\delta y^{\mathcal{M}})^{\top} \,\, \mathsf{C}_{\mathsf{n}} \,\, \delta y^{\mathcal{M}} \Big)^{-1} (\delta y^{\mathcal{M}})^{\top} \mathsf{C}_{\mathsf{n}}$$

 \rightarrow No improvement observed (only approximation for derivative available)

イロト イヨト イヨト

Outline

Macroscopic traffic flow models

2 Calibration approaches

Synthetic traffic data

4 Traffic estimation and prediction

^{6&}lt;sub>Lopez et al.</sub> Microscopic Traffic Simulation using SUMO, 2018

- 10 km long road stretch,
- 3 lanes, no ramps,
- speed limit: 100 km/h,
- different classes of vehicle types (normal, fast and slow cars).

^{6&}lt;sub>Lopez et al.</sub> Microscopic Traffic Simulation using SUMO, 2018

- 10 km long road stretch,
- 3 lanes, no ramps,
- speed limit: 100 km/h,
- different classes of vehicle types (normal, fast and slow cars).

6 Lopez et al. Microscopic Traffic Simulation using SUMO, 2018

- 10 km long road stretch,
- 3 lanes, no ramps,
- speed limit: 100 km/h,
- different classes of vehicle types (normal, fast and slow cars).

Alexandra Würth

04/04/2023 15/27

Outline

Macroscopic traffic flow models

2 Calibration approaches

3 Synthetic traffic data

Traffic estimation and prediction

Traffic estimation.

Alexandra Würth

04/04/2023

17 / 27

Traffic estimation and prediction

Traffic estimation and prediction

Traffic prediction.

イロン イロン イヨン イヨン

Traffic estimation and prediction

Standard approach: predictive mean formula

04/04/2023

18 / 27

Standard approach: predictive mean formula Extension: integrate PDE into GP modeling

3

Standard approach: **predictive mean** formula Extension: **integrate PDE** into GP modeling

Long et al,

AutoIP: A United Framework to Integrate Physics into Gaussian Processes International Conference on Machine Learning, 2022

 \rightarrow Variational posterior distribution with large set of hyperparameters

Standard approach: **predictive mean** formula Extension: **integrate PDE** into GP modeling

Long et al,

AutoIP: A United Framework to Integrate Physics into Gaussian Processes International Conference on Machine Learning, 2022

 \rightarrow Variational posterior distribution with large set of hyperparameters

Chen et al,

APIK: Active Physics-Informed Kriging Model with Partial Differential Equations SIAM/ASA Journal on Uncertainty Quantification, 2022

 \rightarrow Specific form for nonlinear PDE necessary

Standard approach: **predictive mean** formula Extension: **integrate PDE** into GP modeling

Long et al,

AutoIP: A United Framework to Integrate Physics into Gaussian Processes International Conference on Machine Learning, 2022

 \rightarrow Variational posterior distribution with large set of hyperparameters

Chen et al,

APIK: Active Physics-Informed Kriging Model with Partial Differential Equations SIAM/ASA Journal on Uncertainty Quantification, 2022

 \rightarrow Specific form for nonlinear PDE necessary

Chen et al,

Solving and Learning Nonlinear PDEs with Gaussian Processes

Journal of Computational Physics, 2021

 \rightarrow Convergence proof for strong PDE solution

Standard approach: **predictive mean** formula Extension: **integrate PDE** into GP modeling

Long et al,

AutoIP: A United Framework to Integrate Physics into Gaussian Processes International Conference on Machine Learning, 2022

 \rightarrow Variational posterior distribution with large set of hyperparameters

Chen et al,

APIK: Active Physics-Informed Kriging Model with Partial Differential Equations SIAM/ASA Journal on Uncertainty Quantification, 2022

 \rightarrow Specific form for nonlinear PDE necessary

Chen et al,

Solving and Learning Nonlinear PDEs with Gaussian Processes

Journal of Computational Physics, 2021

 \rightarrow Convergence proof for strong PDE solution

On going work: consideration of PDE constraint in hyperparameter optimization

Travel time error

Consideration of N = 875 vehicle trajectories starting every 10 seconds.

Travel time error

Consideration of N = 875 vehicle trajectories starting every 10 seconds.

The travel time error is given by:

$$\mathsf{E}^{\mathsf{T}} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(\tau_i - \hat{\tau}_i)^2}$$

where $\hat{\tau}_i$ denotes the estimated (or predicted) travel time.

イロト イヨト イヨト イヨト

Traffic estimation.

Traffic estimation.

Traffic prediction.

イロン イロン イヨン イヨン

Conclusion

- Proposition of a statistical framework for traffic state reconstruction
- Introduction of a discrepancy term to compensate model limitations
- A. Würth, M. Binois, P. Goatin and S. Göttlich, Data driven uncertainty quantification in macroscopic traffic flow models *Advances in Computational Mathematics*, 2022

Conclusion

- Proposition of a statistical framework for traffic state reconstruction
- Introduction of a discrepancy term to compensate model limitations
- A. Würth, M. Binois, P. Goatin and S. Göttlich, Data driven uncertainty quantification in macroscopic traffic flow models *Advances in Computational Mathematics*, 2022
 - Extension of framework for traffic state prediction
 - Better performance when combining physics and GP in traffic prediction

イロト イヨト イヨト

Conclusion

- Proposition of a statistical framework for traffic state reconstruction
- Introduction of a discrepancy term to compensate model limitations
- A. Würth, M. Binois, P. Goatin and S. Göttlich, Data driven uncertainty quantification in macroscopic traffic flow models *Advances in Computational Mathematics*, 2022
 - Extension of framework for traffic state prediction
 - Better performance when combining physics and GP in traffic prediction

Outlook

- Consideration of real traffic data
- Improvement of boundary loop detector predictions

イロト イヨト イヨト

Thank you Any questions?

Alexandra Würth Centre Inria d'Université Côte d'Azur, France alexandra.wuerth@inria.fr

Alexandra Würth

04/04/2023 22/27

◆□▶ ◆舂▶ ★差▶ ★差▶ ……差……の�??

Travel time error

Traffic estimation.

Traffic prediction.

イロト イロト イヨト イヨト

Two methods of GP prediction

イロト イロト イヨト イヨト

Definition (Weak entropy solution)

A function $W \in L^{\infty}((]0, \mathcal{T}[\times]x_{in}, x_{out}[); W)$ is a weak entropy solution to the IBVP if

• for any entropy-flux pair $(\mathcal{E}, \mathcal{Q})$ and any test function $\phi \in C_c^{\infty}((] - \infty, T[\times]x_{in}, x_{out}[); \mathbb{R}_{\geq 0})$, it holds

$$\int_0^T \int_{x_{in}}^{x_{out}} \left\{ \mathcal{E}(u(W)) \partial_t \phi + \mathcal{Q}(u(W)) \partial_x \phi \right\} dx dt + \int_{x_{in}}^{x_{out}} \mathcal{E}(u(W_0(x))) \phi(0, x) dx \ge 0;$$

• for any boundary entropy pair (α, β) and any $\gamma(t) \in L^1(]0, T[; \mathbb{R}_{\geq 0})$ it holds

$$\begin{split} & \underset{x \to x_{in}+}{\mathrm{ess}\lim} \int_{0}^{T} \beta(u(W(t,x)), u(W_{in}(t)))\gamma(t) \mathrm{dt} \leq 0, \\ & \underset{x \to x_{out}-}{\mathrm{ess}\lim} \int_{0}^{T} \beta(u(W(t,x)), u(W_{out}(t)))\gamma(t) \mathrm{dt} \geq 0. \end{split}$$

Definition (Boundary entropy pair)

An entropy pair $(\alpha(u_1, u_2), \beta(u_1, u_2))$, $u_1, u_2 \in \mathbb{R}^2$ is called a boundary entropy pair⁷ if for every fixed $u_2 \in \mathbb{R}^2$

$$\alpha(\boldsymbol{u}_2,\boldsymbol{u}_2) = \beta(\boldsymbol{u}_2,\boldsymbol{u}_2) = \nabla_1 \alpha(\boldsymbol{u}_2,\boldsymbol{u}_2) = (0,0)^\top.$$

7 Chen, G. and Frid, H., Divergence Measure Fields and Hyperbolic Conservation Laws, 1999 🛛 🗧 ト 🛛 🗧 ト 🤞 📑

The **entropy boundary conditions** with respect to the left (resp. right) boundary state $W_B = (v_B, w_B)$ and for $j \in \{1, 2\}$ reads as follows:

$$\beta^{j}(W, W_{B}) := \mathcal{Q}^{j}(W) - \mathcal{Q}^{j}(W_{B}) - \nabla_{u}\mathcal{E}^{j}(W_{B}) \cdot (f(W) - f(W_{B})) \leq (\geq)0.$$

We consider the following families of **entropy-flux pairs**⁸:

$$\mathcal{E}^{1}(u(W)) = \begin{cases} 0 & \text{if } v \leq \bar{v}, \\ 1 - \frac{\mathcal{R}(v,w)}{\mathcal{R}(\bar{v},w)} & \text{if } v > \bar{v}, \end{cases}$$
$$\mathcal{Q}^{1}(u(W)) = \begin{cases} 0 & \text{if } v \leq \bar{v}, \\ \bar{v} - \frac{v\mathcal{R}(v,w)}{\mathcal{R}(\bar{v},w)} & \text{if } v > \bar{v} \end{cases}$$

for any $\bar{v} \in [0, w_{max}]$ and⁹

$$\mathcal{E}^2(u(W)) = \mathcal{R}(v, w)|ar{w} - w|$$
 $\mathcal{Q}^2(u(W)) = \mathcal{R}(v, w)v|ar{w} - w|$
y $ar{w} \in [w_{min}, w_{max}].$

for an

⁸Andreianov, B., Donadello, C. and Rosini, M. D., A second-order model for vehicular traffics with local point constraints on the flow, 2016 ⁹Serre, D., Systemes de Lois de Conservation, 1996