# Walking with Fabrice among large deviations and sum rules 

Alain Rouault (UVSQ-Paris-Saclay)

2023 April 5th

Le Croisic - MASCOT 2023

## Plan

## 1 Introduction

## Introduction

## Fabrice is a statistician

How to estimate a (probability) measure?
T) (nowing independent observations $\rightarrow$ sampling i.i.d.
2) Knowing stationary obselvations $\rightarrow$ periodogram.
arxantiong some thtuments
LetE - 0 . 1 ] or (the unit cirele). Let $\mu$ be a probability measure on $E$. Its k -th moment is

## Introduction

## Fabrice is a statistician

How to estimate a (probability) measure?
1). Knowing independent observations $\rightarrow$ sampling i.i.d.
ohumaining stationary observations $\rightarrow$ periodogram.
3) Knawing some moments

Let $E=1$ or (the unit cirele). Let $\mu$ be a probability measure on $E$. Its
k -th moment is

## Introduction

## Fabrice is a statistician

: How to estimate a (probability) measure?
(7) (nowing independent observations $\rightarrow$ sampling i.i.d.

## Introduction

Fabrice is a statistician
: How to estimate a (probability) measure?

1) Knowing independent observations $\rightarrow$ sampling i.i.d.


## Introduction

Fabrice is a statistician
: How to estimate a (probability) measure?

1) Knowing independent observations $\rightarrow$ sampling i.i.d.
2) Knowing stationary observations $\rightarrow$ periodogram.
3) Knawing some moments

## Introduction

Fabrice is a statistician
: How to estimate a (probability) measure?

1) Knowing independent observations $\rightarrow$ sampling i.i.d.
2) Knowing stationary observations $\rightarrow$ periodogram.
3) Knowing some moments

Let $E=[0,1]$ or $\mathbb{T}$ (the unit circle). Let $\mu$ be a probability measure on $E$. Its k -th moment is

$$
m_{k}(\mu)=\int_{E} x^{k} d \mu(x)
$$

Data: $m_{1}(\mu), \ldots, m_{n}(\mu)$.

## Common threads :

arscrete random measures


## role playe by the Kulbacke eibler information

## Common threads :

- discrete random measures

$$
\mu^{(n)}=\frac{1}{n} \sum_{i}^{n} z_{i}^{(n)} \delta_{X_{i}^{(n)}} \text { with } \mathbb{E} X_{i}^{(n)}=1 .
$$

## Common threads :

- discrete random measures

$$
\mu^{(n)}=\frac{1}{n} \sum_{i}^{n} Z_{i}^{(n)} \delta_{X_{i}^{(n)}} \text { with } \mathbb{E} X_{i}^{(n)}=1 .
$$

- large deviations

$$
\mathbb{P}\left(\mu^{(n)} \cong \mu\right) \cong \exp -a_{n} I(\mu) \quad\left(a_{n} \uparrow \infty\right)
$$

## Common threads :

- discrete random measures

$$
\mu^{(n)}=\frac{1}{n} \sum_{1}^{n} Z_{i}^{(n)} \delta_{X_{i}^{(n)}} \text { with } \mathbb{E} X_{i}^{(n)}=1
$$

- large deviations

$$
\mathbb{P}\left(\mu^{(n)} \cong \mu\right) \cong \exp -a_{n} I(\mu) \quad\left(a_{n} \uparrow \infty\right)
$$

- role played by the Kullback-Leibler information

$$
\mathcal{K}(P \mid Q)=\left\{\begin{array}{l}
\int \log \frac{d P}{d Q} d P \quad \text { if } P \ll Q \text { and } \log \frac{d P}{d Q} \in L^{1}(P),  \tag{1}\\
\infty \text { otherwise },
\end{array}\right.
$$

1) Maximum Entropy for the Mean

+ D. Dacunha-Castelle, + E. Gassiat (Orsay)

2) Random moment problems
(+ L-V. Lozada-Chang (La Habana), + H. Dette (Bochum))
3) Empirical spectral measures of stationary Gaussian processes + B. Bercu (Bordeaux), + M. Lavielle (INRIA), + AR, + M. Zani (Orléans)
4) Spectral measures, Random matrices and Sum rules + J. Nagel (Dortmund), + AR

## Plan

## 2 MEM

3 सRaxdom momentoroblem

## MEM

Estimate $\mu$ from noisy observations of some moments.

- A reference probability $P$
- Build a sequence

$$
\frac{1}{n} \sum_{1}^{n} \delta_{x_{k}^{(n)}} \Rightarrow_{n \rightarrow \infty} P
$$

- Choose a law $F$ and $Z_{k}$ i.i.d. with law $F$ and consider

$$
v_{n}=\frac{1}{n} \sum_{1}^{n} Z_{k} \delta_{x_{k}}
$$

- Compute

$$
\mathrm{P}_{\mathrm{n}}^{\mathrm{MEM}}=\operatorname{Argmin}\left\{\mathcal{K}\left(\mathrm{R} ; \mathrm{F}^{\otimes \mathfrak{n}}\right\}\right.
$$

among the laws $R$ such that the mean moments of $v_{n}$ under $R$ satisfy the constraint.

- Define the estimator $\hat{v}_{n}^{M E M}=\mathbb{E}_{\text {PMEM }_{n}} v_{n}$.


## Plan

## 3 Random moment problem

## Random moment problem

## Fabrice is a probabilist

Het E $[0,1]$ or $\mathbb{T}$ (the unit circle). Let $\mu$ be a probability measure on $E$. Its $k$-th moment is

$$
m_{k}(\mu)=\int_{E} x^{\mathrm{k}} \mathrm{~d} \mu(x)
$$

The vector of the first $k$ moments is denoted by

$$
m_{k}(\hat{\mu})=\left(m_{1}(\mu)\right.
$$

$$
\left.m_{k}(\mu)\right)
$$

## Random moment problem

Fabrice is a probabilist
Let $E=[0,1]$ or $\mathbb{T}$ (the unit circle). Let $\mu$ be a probability measure on $E$. Its k -th moment is

$$
m_{k}(\mu)=\int_{E} x^{k} d \mu(x)
$$

The vector of the first $k$ moments is denoted by

$$
\mathbf{m}_{k}(\mu)=\left(m_{1}(\mu), \ldots, m_{k}(\mu)\right) .
$$

The sets of moments are

$$
\mathbb{M}_{k}=\left\{\mathbf{m}_{k}(\mu) ; \mu \in \mathcal{M}_{1}(E)\right\} \quad(k \geqslant 1) .
$$

They are compact convex sets.
4 E M O $1-1 / \mathbb{M}_{k}$ and if $\left(m_{1}, \ldots, m_{k}\right) \in \operatorname{lnt} \mathbb{M}_{k}$ then we can define $m_{k+1}=\sup \left\{m_{k+1}(\mu) ; \mu\right.$ s.t.m $\left.m_{k}(\mu)=\left(m_{1}, \ldots, m_{k}\right)\right\}$ $m_{k+1}=\inf \left\{m_{1} 1(\mu) ; \mu\right.$ s.t. $\left.m_{k}(\mu)=\left(m_{1}, \ldots, m_{k}\right)\right\}$

## There exists two discrete mteasures $\mu_{\mathrm{k}}^{ \pm}$corresponding to

We oan equip $\mathbb{M}$ vo with the aniform measure and consider the above (randonm) mpasures

If $E=[0,1] \mathbb{M}_{k}$ and if $\left(m_{1}, \ldots, m_{k}\right) \in \operatorname{lnt} \mathbb{M}_{k}$ then we can define

$$
\begin{aligned}
& m_{k+1}^{+}=\sup \left\{m_{k+1}(\mu) ; \mu \text { s.t. } m_{k}(\mu)=\left(m_{1}, \ldots, m_{k}\right)\right\} \\
& m_{k+1}^{-}=\inf \left\{m_{k+1}(\mu) ; \mu \text { s.t. } \mathbf{m}_{k}(\mu)=\left(m_{1}, \ldots, m_{k}\right)\right\}
\end{aligned}
$$

There exists two discrete measures $\mu_{\mathrm{k}}^{ \pm}$corresponding to

$$
\left(m_{1}, \ldots, m_{k}, m_{k}^{ \pm}\right)
$$

If $E=[0,1] \mathbb{M}_{k}$ and if $\left(m_{1}, \ldots, m_{k}\right) \in \operatorname{lnt} \mathbb{M}_{k}$ then we can define

$$
\begin{aligned}
& m_{k+1}^{+}=\sup \left\{m_{k+1}(\mu) ; \mu \text { s.t. } m_{k}(\mu)=\left(m_{1}, \ldots, m_{k}\right)\right\} \\
& m_{k+1}^{-}=\inf \left\{m_{k+1}(\mu) ; \mu \text { s.t. } m_{k}(\mu)=\left(m_{1}, \ldots, m_{k}\right)\right\}
\end{aligned}
$$

There exists two discrete measures $\mu_{\mathrm{k}}^{ \pm}$corresponding to

$$
\left(m_{1}, \ldots, m_{k}, m_{k}^{ \pm}\right)
$$

We can equip $\mathbb{M}_{k}$ with the uniform measure and consider the above (random) measures.

## Plan

3 HRandon momentoroblem

4 Spectral measures

## Spectral measures

Let $\mathcal{H}$ Che an Hilbert space, $A$ a bounded self-adjoint operator and ea cyclic unitary vector. From the spectral theorem, there exists a unique pith. Hicompactly supported such that

$$
\left\langle e, A^{k}\right\rangle_{\mathcal{H}}=\int_{\mathbb{R}} x^{k} d \mu(x), k \geqslant 0 .
$$

Hive de de the equivalence relation

ff there exists an isometry $V: \mathcal{f} \rightarrow \mathcal{T} \cdot \boldsymbol{s i c h}$ that $B=V h V^{1}$ an $d f=V e$ an ovarian ot he class.

## Spectral measures

Let $\mathcal{H}$ be an Hilbert space, A a bounded self-adjoint operator and e a cyclic unitary vector. From the spectral theorem, there exists a unique pinh. $\mu$ compactly supported such that

## If ive de तe ie oquivalence relation

## Spectral measures

Let $\mathcal{H}$ be an Hilbert space, A a bounded self-adjoint operator and e a cyclic unitary vector. From the spectral theorem, there exists a unique p.m. $\mu$ compactly supported such that

$$
\left\langle e, A^{k} e\right\rangle_{\mathcal{H}}=\int_{\mathbb{R}} x^{\mathrm{k}} \mathrm{~d} \mu(\mathrm{x}), \mathrm{k} \geqslant 0
$$

## Spectral measures

Let $\mathcal{H}$ be an Hilbert space, $A$ a bounded self-adjoint operator and e a cyclic unitary vector. From the spectral theorem, there exists a unique p.m. $\mu$ compactly supported such that

$$
\left\langle e, A^{\mathrm{k}} e\right\rangle_{\mathcal{H}}=\int_{\mathbb{R}} x^{\mathrm{k}} \mathrm{~d} \mu(x), \mathrm{k} \geqslant 0 .
$$

If we define the equivalence relation

$$
(\mathcal{H}, A, e) \sim(\mathcal{K}, B, f)
$$

iff there exists an isometry $\mathrm{V}: \mathcal{H} \rightarrow \mathcal{K}$ such that $\mathrm{B}=\mathrm{VAV}^{-1}$ and $\mathrm{f}=\mathrm{Ve}$ then $\mu$ is an invariant of the class.

## 2 remarkable elements in each class :

## Finite dimension

tet $A_{\mathrm{a}}$ bear $\mathrm{n} \times \mathrm{n}$ self-adjoint matrix, with eigenvalues $\left(\lambda_{j}\right)_{j=1}^{n}$ and (unitary) eigenvectors $\left(\psi_{\mathrm{j}}\right)_{j=1}^{n}$. Assume that $e=e_{1}$ is cyclic. Then the sequence
is the sequence of moments of


2 remarkable elements in each class :

- $\left(\mathrm{L}^{2}(\mathrm{~d} \mu), \mathrm{h} \mapsto(\mathrm{x} \mapsto \mathrm{xh}(\mathrm{x})), \mathbf{1}\right)$
$\Rightarrow\left(\ell^{2}, \mathrm{~J}, \mathrm{e}_{1}\right)$ where J is a tridiagonal matrix and $e_{1}=(1,0,0, \ldots)$.


## Finite dimension

Let $A_{n}$ be a $n \times n$ self-adjoint matrix, with eigenvalues $\left(\lambda_{j}\right)_{j=1}^{n}$ and (unitary) eigenvectors $\left(\psi_{j}\right)_{i=1}^{n}$. Assume that $e=e_{1}$ is cyclic. Then the seguence
is the sequence of moments of

2 remarkable elements in each class :
$-\left(\mathrm{L}^{2}(\mathrm{~d} \mu), \mathrm{h} \mapsto(\mathrm{x} \mapsto \mathrm{xh}(\mathrm{x})), \mathbf{1}\right)$
$-\left(\ell^{2}, \mathrm{~J}, e_{1}\right)$ where J is a tridiagonal matrix and $e_{1}=(1,0,0, \ldots)$.
Finite dimension
nt self-adjoint matrix, with eigenvalues ( $\lambda$ Assume that $e=e_{1}$ is cyclic. Then the

2 remarkable elements in each class :

- $\left(\mathrm{L}^{2}(\mathrm{~d} \mu), h \mapsto(\mathrm{x} \mapsto \mathrm{xh}(\mathrm{x})), \mathbf{1}\right)$
$\Rightarrow\left(\ell^{2}, \mathrm{~J}, \mathrm{e}_{1}\right)$ where J is a tridiagonal matrix and $e_{1}=(1,0,0, \ldots)$.
Finite dimension
Let $A_{n}$ be a $n \times n$ self-adjoint matrix, with eigenvalues $\left(\lambda_{j}\right)_{j=1}^{n}$ and (unitary) eigenvectors $\left(\psi_{j}\right)_{j=1}^{n}$. Assume that $e=e_{1}$ is cyclic.

2 remarkable elements in each class :
$-\left(\mathrm{L}^{2}(\mathrm{~d} \mu), \mathrm{h} \mapsto(\mathrm{x} \mapsto \mathrm{xh}(\mathrm{x})), \mathbf{1}\right)$
$\Rightarrow\left(\ell^{2}, \mathrm{~J}, \mathrm{e}_{1}\right)$ where J is a tridiagonal matrix and $e_{1}=(1,0,0, \ldots)$.
Finite dimension
Let $A_{n}$ be a $n \times n$ self-adjoint matrix, with eigenvalues $\left(\lambda_{j}\right)_{j=1}^{n}$ and (unitary) eigenvectors $\left(\psi_{j}\right)_{j=1}^{n}$. Assume that $e=e_{1}$ is cyclic. Then the sequence

$$
\left(\left(A_{n}\right)^{k}\right)_{11} k \geqslant 1
$$

is the sequence of moments of

$$
\begin{equation*}
\mu_{w}^{(n)}:=\sum_{j=1}^{n} w_{j} \delta_{\lambda_{j}}, \quad w_{j}:=\left|\left\langle\psi_{j}, e_{1}\right\rangle\right|^{2} \tag{2}
\end{equation*}
$$

2 remarkable elements in each class :

- $\left(\mathrm{L}^{2}(\mathrm{~d} \mu), h \mapsto(\mathrm{x} \mapsto \mathrm{xh}(\mathrm{x})), \mathbf{1}\right)$
$\Rightarrow\left(\ell^{2}, \mathrm{~J}, \mathrm{e}_{1}\right)$ where J is a tridiagonal matrix and $e_{1}=(1,0,0, \ldots)$.
Finite dimension
Let $A_{n}$ be a $n \times n$ self-adjoint matrix, with eigenvalues $\left(\lambda_{j}\right)_{j=1}^{n}$ and (unitary) eigenvectors $\left(\psi_{j}\right)_{j=1}^{n}$. Assume that $e=e_{1}$ is cyclic. Then the sequence

$$
\left(\left(A_{n}\right)^{k}\right)_{11} k \geqslant 1
$$

is the sequence of moments of

$$
\begin{equation*}
\mu_{w}^{(n)}:=\sum_{j=1}^{n} w_{j} \delta_{\lambda_{j}}, \quad w_{j}:=\left|\left\langle\psi_{j}, e_{1}\right\rangle\right|^{2} \tag{2}
\end{equation*}
$$

We can encode $\mu_{\mathrm{w}}^{(n)}$ by two $n$-uplets ( $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$ ) (weights) and $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

2 remarkable elements in each class :

- $\left(\mathrm{L}^{2}(\mathrm{~d} \mu), h \mapsto(x \mapsto x h(x)), 1\right)$
$\rightarrow\left(\ell^{2}, \mathrm{~J}, \mathrm{e}_{1}\right)$ where J is a tridiagonal matrix and $e_{1}=(1,0,0, \ldots)$.
Finite dimension
Let $A_{n}$ be a $n \times n$ self-adjoint matrix, with eigenvalues $\left(\lambda_{j}\right)_{j=1}^{n}$ and (unitary) eigenvectors $\left(\psi_{j}\right)_{j=1}^{n}$. Assume that $e=e_{1}$ is cyclic. Then the sequence

$$
\left(\left(A_{n}\right)^{k}\right)_{11} k \geqslant 1
$$

is the sequence of moments of

$$
\begin{equation*}
\mu_{w}^{(n)}:=\sum_{j=1}^{n} w_{j} \delta_{\lambda_{j}}, \quad w_{j}:=\left|\left\langle\psi_{j}, e_{1}\right\rangle\right|^{2} \tag{2}
\end{equation*}
$$

We can encode $\mu_{\mathrm{w}}^{(\mathrm{n})}$ by two $n$-uplets ( $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$ ) (weights) and $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
There is another encoding based on orthogonal polynomials. In the basis $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ obtained by the Gram-Schmidt procedure applied to ( $e, A_{n} e, \ldots, A_{n}^{n-1} e$ ), the matrix $A_{N}$ becomes

$$
J_{n}=\left(\begin{array}{ccccc}
b_{1} & a_{1} & 0 & \cdots & 0 \\
a_{1} & b_{2} & a_{2} & \cdots & 0 \\
0 & a_{2} & b_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & a_{n-1} & b_{n}
\end{array}\right)
$$

with $a_{j}>0$ for all $j$.
If

$$
\left(e, A e, \ldots, A^{n-1} e\right) \longleftrightarrow\left(1, x, \ldots, x^{n-1}\right)
$$

then, by Gram-Schmidt

$$
\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \longleftrightarrow\left(1, p_{1}(x), \ldots, p_{n-1}(x)\right)
$$

These polynomials satisfy the recursion :

$$
x p_{j}(x)=a_{j+1} p_{j+1}(x)+b_{j+1} p_{j}(x)+a_{j} p_{j-1}(x)
$$

Summarizing, we have two remakable random measures :

$$
\mu_{\mathrm{u}}^{(n)}=\frac{1}{\mathrm{n}} \sum_{1}^{\mathrm{n}} \delta_{\lambda_{j}}
$$

(empirical spectral distribution), whose moments are

$$
m_{\mathrm{k}}\left(\mu_{\mathrm{u}}^{(n)}\right)=\frac{1}{\mathrm{n}} \operatorname{tr}\left(A_{\mathrm{n}}\right)^{\mathrm{k}}
$$

and

$$
\mu_{\mathrm{w}}^{(n)}=\sum_{1}^{n} \mathrm{w}_{j} \delta_{\lambda_{i}}
$$

(spectral measure of $\left.\left(A_{n}, e_{1}\right)\right)$, whose moments are

$$
m_{\mathrm{k}}\left(\mu_{\mathrm{w}}^{(n)}\right)=\left(\left(A_{\mathrm{n}}\right)^{\mathrm{k}}\right)_{11}
$$

## Randomization

- Suppose the distribution of $M_{n}$ has the GUE-density

$$
z_{n}^{-1} \exp -\frac{n}{2} \operatorname{tr}\left(M^{2}\right)
$$

- Dumitriu-Edelman ('02) proved that the Jacobi parameters are independent and

$$
\begin{aligned}
b_{k}^{(n)} & \sim \mathcal{N}\left(0 ; n^{-1}\right) \quad(1 \leqslant k \leqslant n) \\
\left(a_{k}^{(n)}\right)^{2} & \sim \text { Gamma }\left(n-k ; n^{-1}\right)(1 \leqslant k \leqslant n-1)
\end{aligned}
$$

Note that $\mathrm{b}_{\mathrm{k}}^{(\mathrm{n})} \rightarrow 0, \mathrm{a}_{\mathrm{k}}^{(\mathrm{n})} \rightarrow 1$, the Jacobi coefficients of SC :

$$
\operatorname{SC}(d x)=\frac{1}{2 \pi} \sqrt{\left(4-x^{2}\right)^{2}} d x
$$

## Theorem (GR '11)

$\mu_{v}^{(n)}$ satisfies the LDP with speed n with rate function

$$
J_{\text {coeff }}=\sum_{1}^{\infty} \frac{1}{2} \mathrm{~b}_{\mathrm{k}}^{2}+\sum_{1}^{\infty} \mathrm{G}\left(\mathrm{a}_{\mathrm{k}}^{2}\right), \mathrm{G}(x)=x-1-\log x .
$$

## LDP for the "measure side", general potential (no gap)

don random complex Hermitian $n \times n$ matrix with density

$$
\left(Z_{n}^{V}\right)^{-1} \exp (-n \operatorname{tr} V(M))
$$

Potential $V: \mathbb{R} \rightarrow(-\infty, \infty]$ smooth, e.g. $V(x)=x^{2} / 2$, (GUE).

$$
\mu_{\mathrm{w}}^{(n)}=\sum_{1}^{n} W_{i} \delta_{\lambda_{i}}
$$

with at $10_{4}$ i 2 for Lunitary matrix of eigenvectors.
The joint density of ef igenvalues is
atid $\mathrm{m}_{1}, \ldots, \mathrm{w}_{n}$ ) is uniformly distributed on the simplex and ndependent of the egepulues:

## LDP for the "measure side", general potential (no gap)

- $M_{n}$ random complex Hermitian $n \times n$ matrix with density

$$
\left(Z_{n}^{V}\right)^{-1} \exp (-n \operatorname{tr} V(M))
$$

Potential $V: \mathbb{R} \rightarrow(-\infty, \infty]$ smooth, e.g. $V(x)=x^{2} / 2$, (GUE).

with tex $\left.1 \mathrm{CH}_{4}\right|^{2}$ for Lunitary matrix of eigenvectors.
The ioint density of efaenvalues is

## LDP for the "measure side", general potential (no gap)

- $M_{n}$ random complex Hermitian $n \times n$ matrix with density

$$
\left(Z_{n}^{V}\right)^{-1} \exp (-n \operatorname{tr} V(M))
$$

- Potential $\mathrm{V}: \mathbb{R} \rightarrow(-\infty, \infty]$ smooth, e.g. $\mathrm{V}(x)=x^{2} / 2$, (GUE).


## LDP for the "measure side", general potential (no gap)

- $M_{n}$ random complex Hermitian $n \times n$ matrix with density

$$
\left(Z_{n}^{V}\right)^{-1} \exp (-n \operatorname{tr} V(M))
$$

- Potential $\mathrm{V}: \mathbb{R} \rightarrow(-\infty, \infty]$ smooth, e.g. $\mathrm{V}(x)=x^{2} / 2$, (GUE).

$$
\mu_{\mathrm{w}}^{(n)}=\sum_{1}^{n} w_{i} \delta_{\lambda_{i}}
$$

with $\mathrm{w}_{\mathrm{i}}=\left|\mathrm{U}_{1, \mathrm{i}}\right|^{2}$ for U unitary matrix of eigenvectors.

## LDP for the "measure side", general potential (no gap)

- $M_{n}$ random complex Hermitian $n \times n$ matrix with density

$$
\left(Z_{\mathrm{n}}^{\mathrm{V}}\right)^{-1} \exp (-\operatorname{ntr} \mathrm{V}(M))
$$

- Potential $\mathrm{V}: \mathbb{R} \rightarrow(-\infty, \infty]$ smooth, e.g. $\mathrm{V}(x)=x^{2} / 2$, (GUE).

$$
\mu_{\mathrm{w}}^{(n)}=\sum_{1}^{n} w_{i} \delta_{\lambda_{i}}
$$

with $\mathrm{w}_{\mathrm{i}}=\left|\mathrm{U}_{1, \mathrm{i}}\right|^{2}$ for U unitary matrix of eigenvectors.

- The joint density of eigenvalues is

$$
\left(Z_{n}^{V}\right)^{-1} \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} \prod_{i}^{n} \exp \left(-n V\left(\lambda_{i}\right)\right)
$$

and ( $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$ ) is uniformly distributed on the simplex, and independent of the eigenvalues.

## Question : how to get LDP for

$$
\mu_{\mathrm{w}}^{(\mathrm{n})}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}} \delta_{\lambda_{\mathrm{i}}}
$$

directly?

## First point : Asymptotics of the ESD

$$
\mu_{\mathrm{u}}^{(n)}:=\frac{1}{n} \sum_{1}^{n} \delta_{\lambda_{j}}
$$

## satisfies :

Tim $N \mu_{u}^{(n)}=\mu_{\mathrm{V}}$ in probability with $\mu_{\mathrm{V}}$ compactly supported by [aly, by] (equilibrium measure a.k.a. density of states)

Ben:Aroue, Gutionnet ('97) : $\left(\mu^{(n)}\right)$ satisfies the IDP mithi speed $n^{2}$ and rate function

B A Arous, Denbo; Guionnet ('Ot). The large de (res Emailest)ev seusfies thie LDP at right of $b_{v}$ (resp. pr left of $a v$ ) wth peed and

## First point : Asymptotics of the ESD

$$
\mu_{\mathrm{u}}^{(n)}:=\frac{1}{n} \sum_{1}^{n} \delta_{\lambda_{j}}
$$

## satisfies:

$\downarrow \lim _{\mathrm{N}} \mu_{\mathrm{u}}^{(n)}=\mu_{\mathrm{V}}$ in probability with $\mu_{\mathrm{V}}$ compactly supported by [ $a_{V}, b_{V}$ ] (equilibrium measure a.k.a. density of states)

andrate function

## First point : Asymptotics of the ESD

$$
\mu_{u}^{(n)}:=\frac{1}{n} \sum_{1}^{n} \delta_{\lambda_{j}}
$$

satisfies :
$\checkmark \lim _{\mathrm{N}} \mu_{\mathrm{u}}^{(n)}=\mu_{\mathrm{V}}$ in probability with $\mu_{\mathrm{V}}$ compactly supported by [ $a_{V}, b_{V}$ ] (equilibrium measure a.k.a. density of states)
$\rightarrow$ Ben Arous, Guionnet ('97) : ( $\left.\mu_{\mathrm{u}}^{(n)}\right)$ satisfies the LDP with speed $n^{2}$ and rate function

$$
\mathcal{J}^{E S D}(\mu)=\int V(x) d \mu(x)-\iint \log |x-y| d \mu(x) d \mu(y)-c_{V}
$$

## First point : Asymptotics of the ESD

$$
\mu_{\mathrm{u}}^{(\mathfrak{n})}:=\frac{1}{\mathrm{n}} \sum_{1}^{\mathrm{n}} \delta_{\lambda_{\mathrm{j}}}
$$

satisfies:
$>\lim _{\mathrm{N}} \mu_{\mathrm{u}}^{(\mathfrak{n})}=\mu_{\mathrm{V}}$ in probability with $\mu_{\mathrm{V}}$ compactly supported by [ $a_{V}, b_{V}$ ] (equilibrium measure a.k.a. density of states)
$\rightarrow$ Ben Arous, Guionnet ('97) : ( $\left.\mu_{\mathrm{u}}^{(n)}\right)$ satisfies the LDP with speed $\mathrm{n}^{2}$ and rate function

$$
\mathcal{J}^{E S D}(\mu)=\int V(x) d \mu(x)-\iint \log |x-y| d \mu(x) d \mu(y)-c_{V}
$$

- Ben Arous, Dembo, Guionnet ('01) : The largest (resp.smallest) ev satisfies the LDP at right of $b_{V}$ (resp. at left of $a_{V}$ ) with speed $n$ and rate $\mathcal{F}_{V}^{ \pm}$.


## Second point : decoupling

At scale $n$, the measure $\mu_{\mathrm{u}}^{(\mathfrak{n})}$ is quasi-deterministic, and the randomness comes essentially from the weights $w_{k}$ 's.

## are not independent but

## Second point : decoupling

At scale $n$, the measure $\mu_{\mathrm{u}}^{(\mathfrak{n})}$ is quasi-deterministic, and the randomness comes essentially from the weights $\mathrm{w}_{\mathrm{k}}$ 's. The weights $\mathrm{w}_{\mathrm{k}}$ are not independent but

$$
\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right) \stackrel{(\mathrm{d})}{=}\left(\frac{\gamma_{1}}{\gamma_{1}+\cdots+\gamma_{n}}, \cdots, \frac{\gamma_{n}}{\gamma_{1}+\cdots+\gamma_{n}}\right)
$$

where the $\gamma_{k}$ 's are independent, $\exp (1)$. So, we can write

## Second point : decoupling

At scale $n$, the measure $\mu_{u}^{(n)}$ is quasi-deterministic, and the randomness comes essentially from the weights $\mathrm{w}_{\mathrm{k}}$ 's. The weights $\mathrm{w}_{\mathrm{k}}$ are not independent but

$$
\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right) \stackrel{(\mathrm{d})}{=}\left(\frac{\gamma_{1}}{\gamma_{1}+\cdots+\gamma_{n}}, \cdots, \frac{\gamma_{n}}{\gamma_{1}+\cdots+\gamma_{n}}\right)
$$

where the $\gamma_{k}$ 's are independent, $\exp (1)$. So, we can write

$$
\mu_{\mathrm{w}}^{(n)} \stackrel{(d)}{=} \frac{\tilde{\mu}_{n}}{\int \mathrm{~d} \tilde{\mu}_{n}} \text { with } \tilde{\mu}_{n}=\sum_{k=1}^{n} \gamma_{k} \delta_{\lambda_{k}} \text {, }
$$

## Second point : decoupling

At scale $n$, the measure $\mu_{\mathrm{u}}^{(\mathfrak{n})}$ is quasi-deterministic, and the randomness comes essentially from the weights $w_{k}$ 's. The weights $\mathrm{w}_{\mathrm{k}}$ are not independent but

$$
\left(w_{1}, \ldots, w_{n}\right) \stackrel{(d)}{=}\left(\frac{\gamma_{1}}{\gamma_{1}+\cdots+\gamma_{n}}, \cdots, \frac{\gamma_{n}}{\gamma_{1}+\cdots+\gamma_{n}}\right)
$$

where the $\gamma_{\mathrm{k}}$ 's are independent, $\exp (1)$. So, we can write

$$
\mu_{w}^{(n)} \stackrel{(d)}{=} \frac{\tilde{\mu}_{n}}{\int d \tilde{\mu}_{n}} \text { with } \tilde{\mu}_{n}=\sum_{k=1}^{n} \gamma_{k} \delta_{\lambda_{k}} \text {, }
$$

study first $\tilde{\mu}_{n}$ and then make the "contraction".

## $\mu \sim\left\{\int f d \mu ; f \in \mathcal{C}_{b}\right\}$ (Gärtner-Ellis approach)


$\log (1-x)$. Then, it could be expected that

$\mu \sim\left\{\int f d \mu ; f \in \mathcal{C}_{b}\right\}$ (Gärtner-Ellis approach)

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(n \int f d \tilde{\mu}_{n}\right)\right]=\mathbb{E}\left[\prod_{k=1}^{n} \exp \left(\gamma_{k} f\left(\lambda_{k}\right)\right)\right] \\
&=\mathbb{E}\left[\prod_{k=1}^{n} \exp \left(L \circ f\left(\lambda_{k}\right)\right)\right]=\mathbb{E}\left[\exp \left(n \int(L \circ f) d \mu_{u}^{(n)}\right)\right]
\end{aligned}
$$

with $\mathrm{L}(\mathrm{x})=-\log (1-\mathrm{x})$. Then, it could be expected that
$\mu \sim\left\{\int f d \mu ; f \in \mathcal{C}_{b}\right\}$ (Gärtner-Ellis approach)

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(n \int f d \tilde{\mu}_{n}\right)\right]=\mathbb{E}\left[\prod_{k=1}^{n} \exp \left(\gamma_{k} f\left(\lambda_{k}\right)\right)\right] \\
&=\mathbb{E}\left[\prod_{k=1}^{n} \exp \left(L \circ f\left(\lambda_{k}\right)\right)\right]=\mathbb{E}\left[\exp \left(n \int(L \circ f) d \mu_{u}^{(n)}\right)\right]
\end{aligned}
$$

with $\mathrm{L}(\mathrm{x})=-\log (1-\mathrm{x})$. Then, it could be expected that

$$
\frac{1}{n} \log \mathbb{E}\left[\exp \left(n \int f d \tilde{\mu}_{n}\right)\right] \rightarrow \int(L \circ f) d \mu_{V}
$$

$\mu \sim\left\{\int f d \mu ; f \in \mathcal{C}_{b}\right\}$ (Gärtner-Ellis approach)

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(n \int f d \tilde{\mu}_{n}\right)\right]=\mathbb{E}\left[\prod_{k=1}^{n} \exp \left(\gamma_{k} f\left(\lambda_{k}\right)\right)\right] \\
&=\mathbb{E}\left[\prod_{k=1}^{n} \exp \left(L \circ f\left(\lambda_{k}\right)\right)\right]=\mathbb{E}\left[\exp \left(n \int(L \circ f) d \mu_{u}^{(n)}\right)\right]
\end{aligned}
$$

with $\mathrm{L}(\mathrm{x})=-\log (1-\mathrm{x})$. Then, it could be expected that

$$
\frac{1}{n} \log \mathbb{E}\left[\exp \left(n \int f d \tilde{\mu}_{n}\right)\right] \rightarrow \int(L \circ f) d \mu_{V}
$$

and then the LDP for $\tilde{\mu}_{n}$ would be

$$
\tilde{I}(\mu)=\sup _{f} \int f d \mu-\int(L \circ f) d \mu_{V}=\mathcal{H}\left(\mu_{V} / \mu\right)+\int d \mu-1
$$

But there are contributions of the outliers, due to their LDP with speed $n$ with rate function $\mathcal{F}_{V}^{ \pm}$. This function is the effective potential (up to a constant). When the potential is quadratic, it is

$$
\mathcal{F}_{\mathrm{H}}^{ \pm}(x)=\int_{2}^{|x|} \sqrt{\mathrm{t}^{2}-4} d t
$$

i.e. if $\lambda_{1}^{(n)}>\lambda_{2}^{(n)}>\cdots>\lambda_{r}^{(n)}$, then

$$
\mathbb{P}\left(\lambda_{1}^{(n)} \cong E_{1}^{+}, \ldots, \lambda_{r}^{(n)} \cong E_{r}^{+}\right)=\exp -n\left[\sum_{1}^{r} \mathcal{F}_{H}^{+}\left(E_{i}^{+}\right)+o(1)\right]
$$

## Theorem (GNR '16)

Under assumptions on V , $\left(\mu_{\mathrm{w}}^{(\mathrm{n})}\right)$ satisfies the LDP in the scale N with good rate function

$$
\mathcal{J}_{\text {meas }}(\mu)=\mathcal{K}\left(\mu_{V} \mid \mu\right)+\sum_{k} \mathcal{F}_{V}\left(E_{k}^{+}\right)+\sum_{k} \mathcal{F}_{V}\left(E_{k}^{-}\right)
$$

for probability measures $\mu$ on $\mathbb{R}$ satisfying

$$
\operatorname{Supp}(\Sigma)=\left[\mathrm{a}_{V}, \mathrm{~b}_{V}\right] \cup\left\{\mathrm{E}_{\mathrm{k}}^{-}\right\}_{\mathrm{k}=1}^{\mathrm{K}^{-}} \cup\left\{\mathrm{E}_{\mathrm{k}}^{+}\right\}_{j=1}^{\mathrm{K}^{+}}
$$

where $\mathrm{K}^{+}$(resp. $\mathrm{K}^{-}$) is 0 , finite or infinite and $\mathrm{E}_{\mathrm{k}}^{-} \uparrow \mathrm{a}_{\mathrm{V}}$ and $\mathrm{E}_{\mathrm{k}}^{+} \downarrow \mathrm{b}_{\mathrm{V}}$ are isolated points of the support, $\mu_{\mathrm{V}}$ is the equilibrium measure and $\left[\mathrm{a}_{\mathrm{V}}, \mathrm{b}_{\mathrm{V}}\right]$ is its support.

## First sum rule

We have 2 LDPs for the same object under two different encodings encoding. By uniqueness we obtain $I_{\text {coeff }}(\mu)=I_{\text {meas }}(\mu)$. We recover the


## First sum rule

We have 2 LDPs for the same object under two different encodings $\mathrm{I}_{\text {coeff }}$ via the coefficients encoding and $\mathrm{I}_{\text {meas }}$ via the weight + support encoding. By uniqueness we obtain $I_{\text {coeff }}(\mu)=I_{\text {meas }}(\mu)$. We recover the

## First sum rule

We have 2 LDPs for the same object under two different encodings $\mathrm{I}_{\text {coeff }}$ via the coefficients encoding and $\mathrm{I}_{\text {meas }}$ via the weight + support encoding. By uniqueness we obtain $I_{\text {coeff }}(\mu)=I_{\text {meas }}(\mu)$.


## First sum rule

We have 2 LDPs for the same object under two different encodings $\mathrm{I}_{\text {coeff }}$ via the coefficients encoding and $\mathrm{I}_{\text {meas }}$ via the weight + support encoding. By uniqueness we obtain $\mathrm{I}_{\text {coeff }}(\mu)=\mathrm{I}_{\text {meas }}(\mu)$. We recover the

## First sum rule

We have 2 LDPs for the same object under two different encodings $\mathrm{I}_{\text {coeff }}$ via the coefficients encoding and $\mathrm{I}_{\text {meas }}$ via the weight + support encoding. By uniqueness we obtain $\mathrm{I}_{\text {coeff }}(\mu)=\mathrm{I}_{\text {meas }}(\mu)$. We recover the Killip-Simon sum rule (2003)

$$
\mathcal{K}(S C \mid \mu)+\sum_{k} \mathcal{F}\left(\mathrm{E}_{\mathrm{k}}^{+}\right)+\sum_{k} \mathcal{F}\left(\mathrm{E}_{\mathrm{k}}^{-}\right)=\sum_{j} \mathrm{G}\left(\mathrm{a}_{\mathrm{j}}^{2}\right)+\frac{\mathrm{b}_{\mathrm{j}}^{2}}{2},
$$



## On the unit circle $\mathbb{T}$ we have three sum rules :

Recovering


## On the unit circle $\mathbb{T}$ we have three sum rules : Recovering

## Szegő-Verblunsky formula (1915-1936)

$$
\mathcal{K}(\text { UNIF } \mid \mu)=\sum_{j}-\log \left(1-\left|\alpha_{j}\right|^{2}\right)
$$

## On the unit circle $\mathbb{T}$ we have three sum rules : Recovering

## Szegő-Verblunsky formula (1915-1936)

$$
\mathcal{K}(\text { UNIF } \mid \mu)=\sum_{j}-\log \left(1-\left|\alpha_{j}\right|^{2}\right)
$$

New sum rules

## On the unit circle $\mathbb{T}$ we have three sum rules :

Recovering

## Szegő-Verblunsky formula (1915-1936)

$$
\mathcal{K}(\text { UNIF } \mid \mu)=\sum_{j}-\log \left(1-\left|\alpha_{j}\right|^{2}\right)
$$

New sum rules
Gross-Witten, with potential $\mathcal{V}\left(e^{\mathfrak{i} \theta}\right)=\mathrm{g} \cos \theta$.

Conclus on - Fabriceis also a spectral analyst!

On the unit circle $\mathbb{T}$ we have three sum rules : Recovering

## Szegő-Verblunsky formula (1915-1936)

$$
\mathcal{K}(\text { UNIF } \mid \mu)=\sum_{j}-\log \left(1-\left|\alpha_{j}\right|^{2}\right)
$$

New sum rules
Gross-Witten, with potential $\mathcal{V}\left(e^{i \theta}\right)=\mathrm{g} \cos \theta$. Hua-Pickrell, with potential $\mathcal{V}\left(e^{i \theta}\right)=d \log \left|1-e^{i \theta}\right|^{2}$.

On the unit circle $\mathbb{T}$ we have three sum rules : Recovering

## Szegő-Verblunsky formula (1915-1936)

$$
\mathcal{K}(\text { UNIF } \mid \mu)=\sum_{j}-\log \left(1-\left|\alpha_{j}\right|^{2}\right)
$$

New sum rules
Gross-Witten, with potential $\mathcal{V}\left(e^{\mathfrak{i} \theta}\right)=\mathrm{g} \cos \theta$. Hua-Pickrell, with potential $\mathcal{V}\left(e^{i \theta}\right)=d \log \left|1-e^{i \theta}\right|^{2}$.

Conclusion : Fabrice is also a spectral analyst !

# Merci pour votre attention! <br> Thanks for your attention! 

```
and
```



