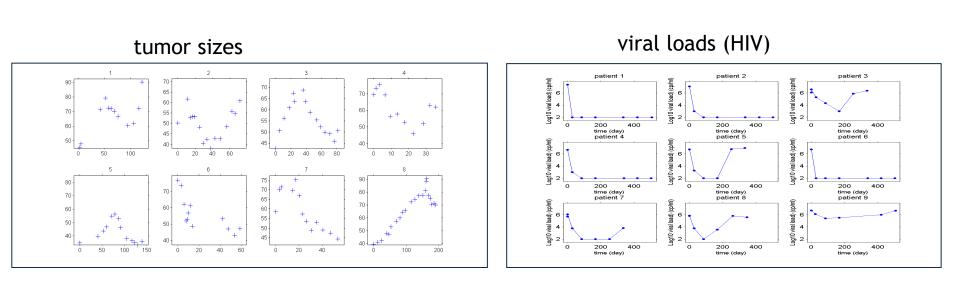


MODELING AND SIMULATION IN PHARMACOMETRICS: SOME METHODS, TOOLS AND OPEN PROBLEMS

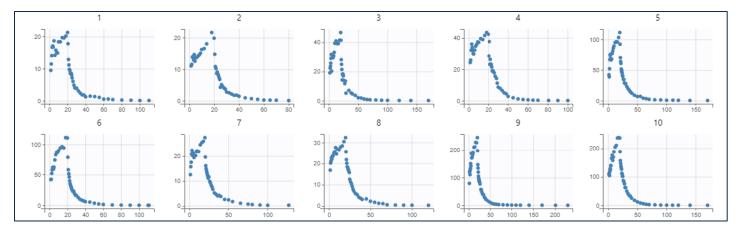
Marc Lavielle Inria Saclay & Ecole Polytechnique

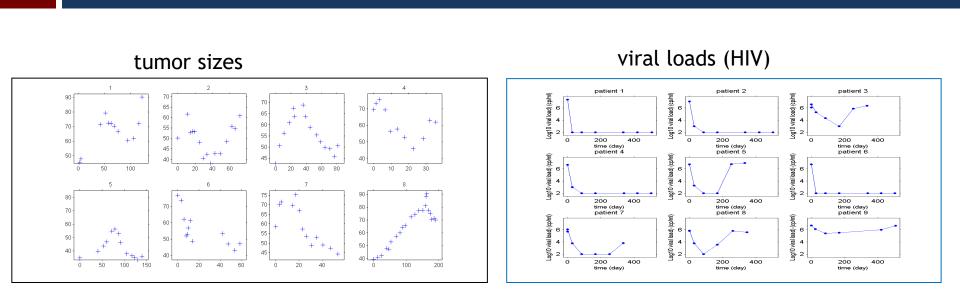
MASCOT-NUM 2023

April 5th 2023



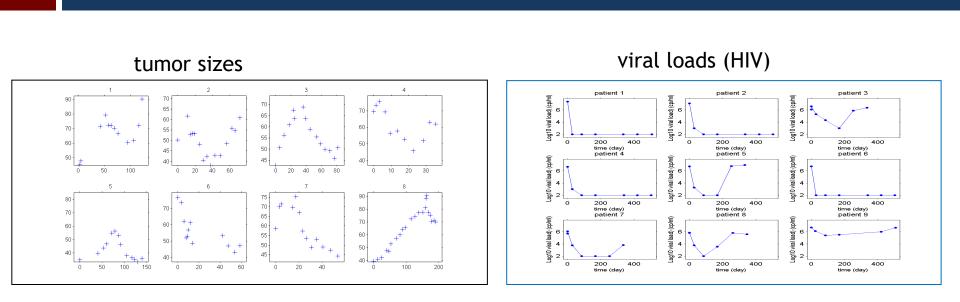
drug concentration





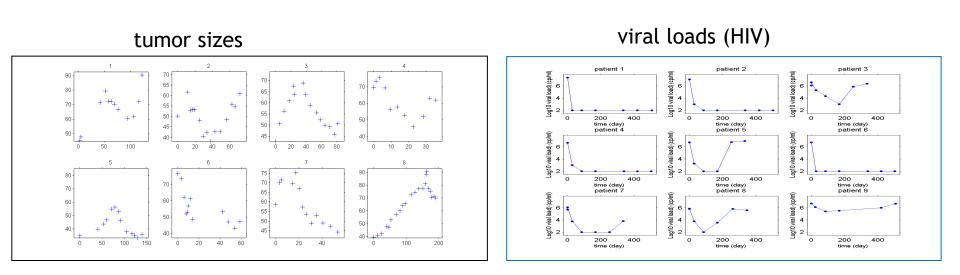
Objective : build

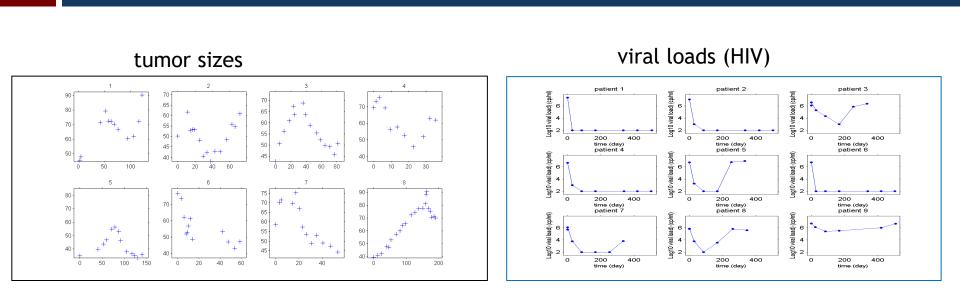
• A mecanistic model that describes the dynamics of the phenomena under study



Objective : build

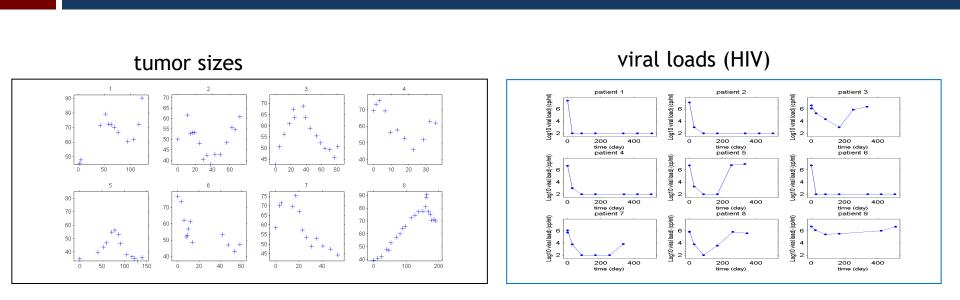
- A mecanistic model that describes the dynamics of the phenomena under study
- A statistical model that describes the variability of the observed data



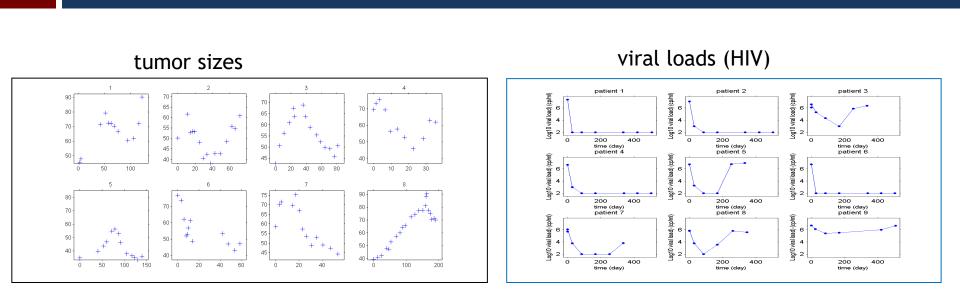


Method for model building

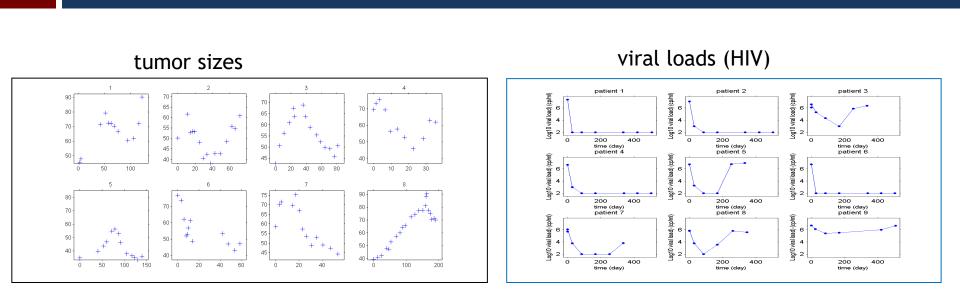
1. Make some hypothesis about the model



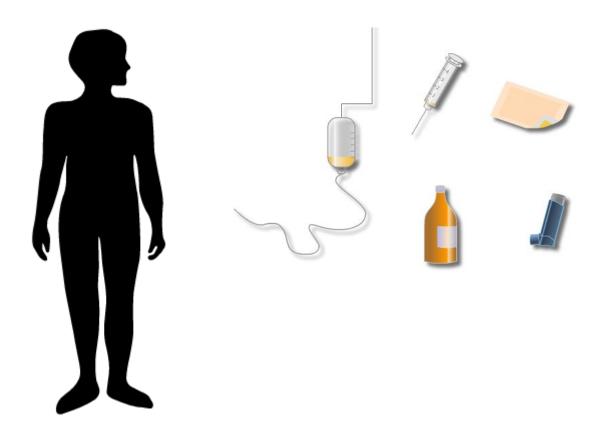
- 1. Make some hypothesis about the model
- 2. Implement and fit this model to the data

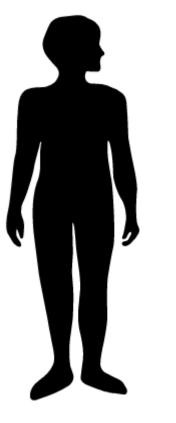


- 1. Make some hypothesis about the model
- 2. Implement and fit this model to the data
- 3. Detect possible misspecifications in the model



- 1. Make some hypothesis about the model
- 2. Implement and fit this model to the data
- 3. Detect possible misspecifications in the model
- 4. Define a new model and go to step 2.



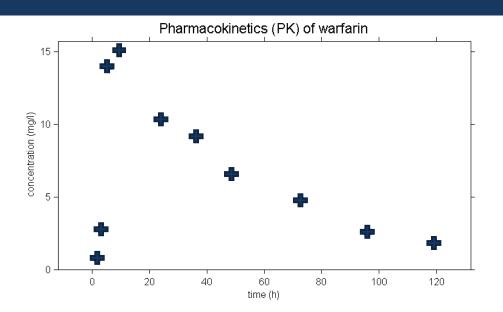


anticoagulant used in the prevention of thrombosis

Pharmacokinetics:

what the body does to the drug

Absorption Distribution Metabolism Excretion

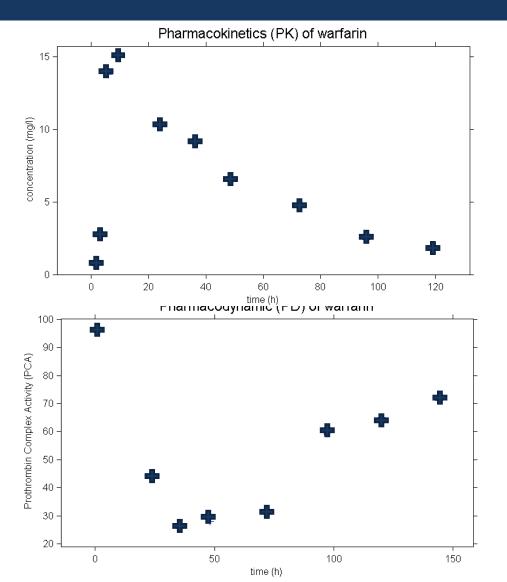


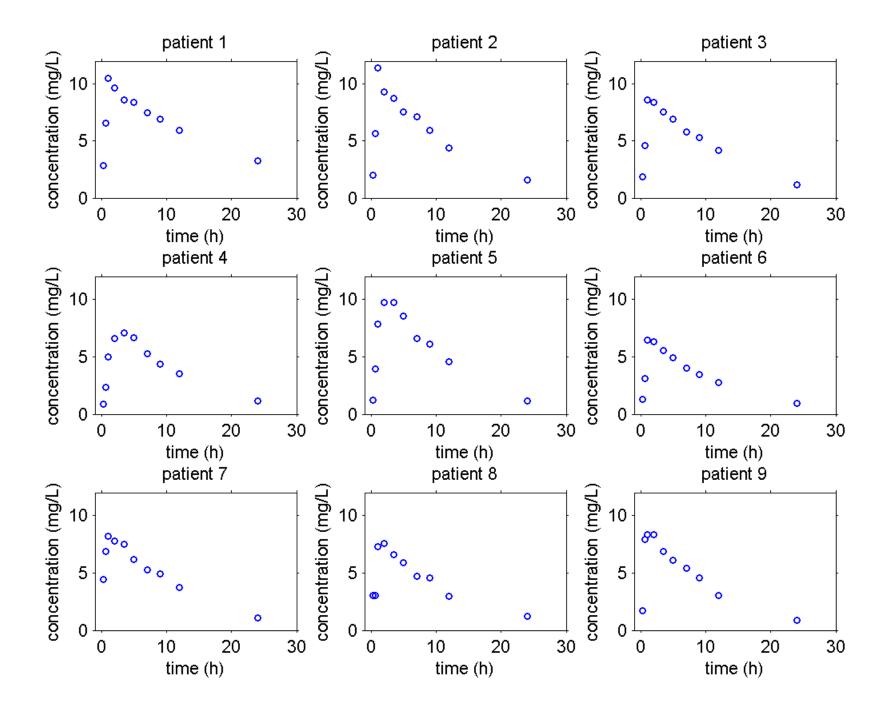
Pharmacokinetics:

what the body does to the drug

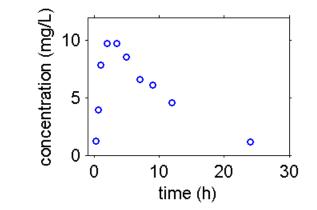
Pharmacodynamics:

what the drug does to the body

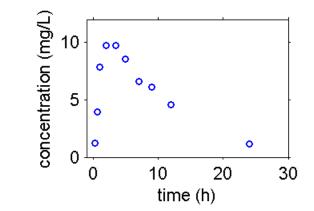


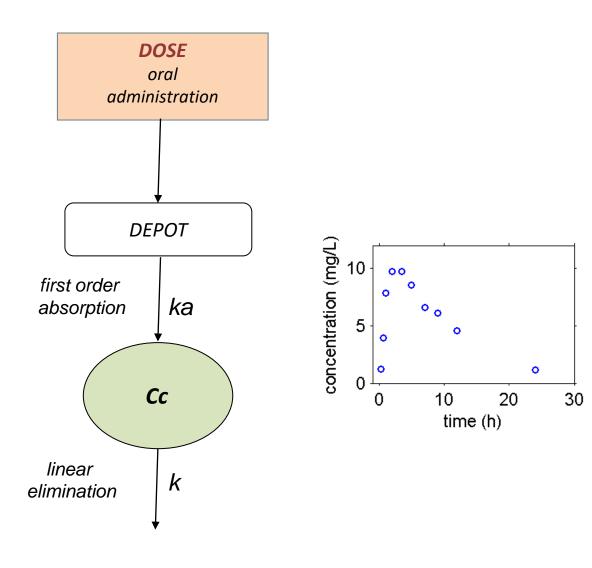


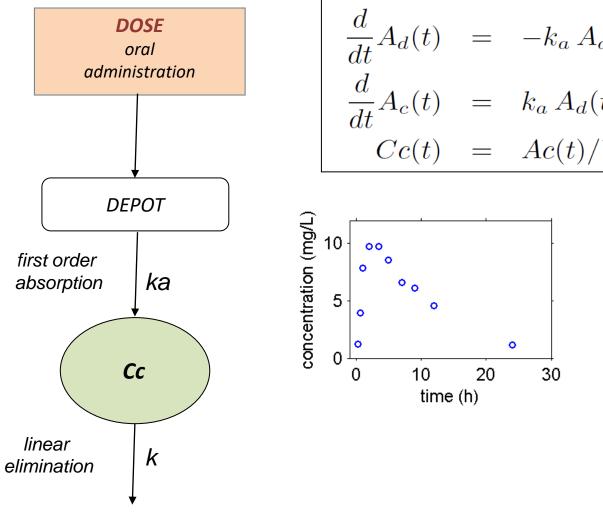
The individual approach



Observations: $y_1, y_2, ..., y_n$ at times $t_1, t_2, ..., t_n$ Model: $y_j = f(t_j, \psi) + e_j$, $1 \le j \le n$



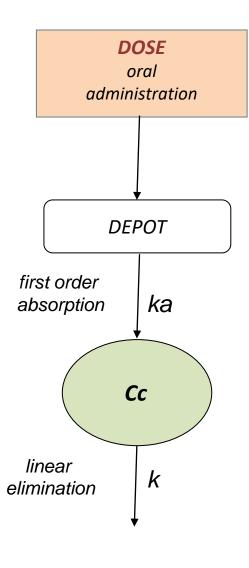




$$\frac{d}{dt}A_d(t) = -k_a A_d(t)$$

$$\frac{d}{dt}A_c(t) = k_a A_d(t) - k A_c(t)$$

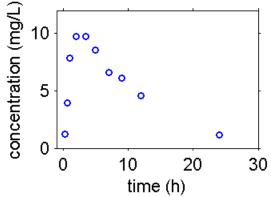
$$Cc(t) = Ac(t)/V$$



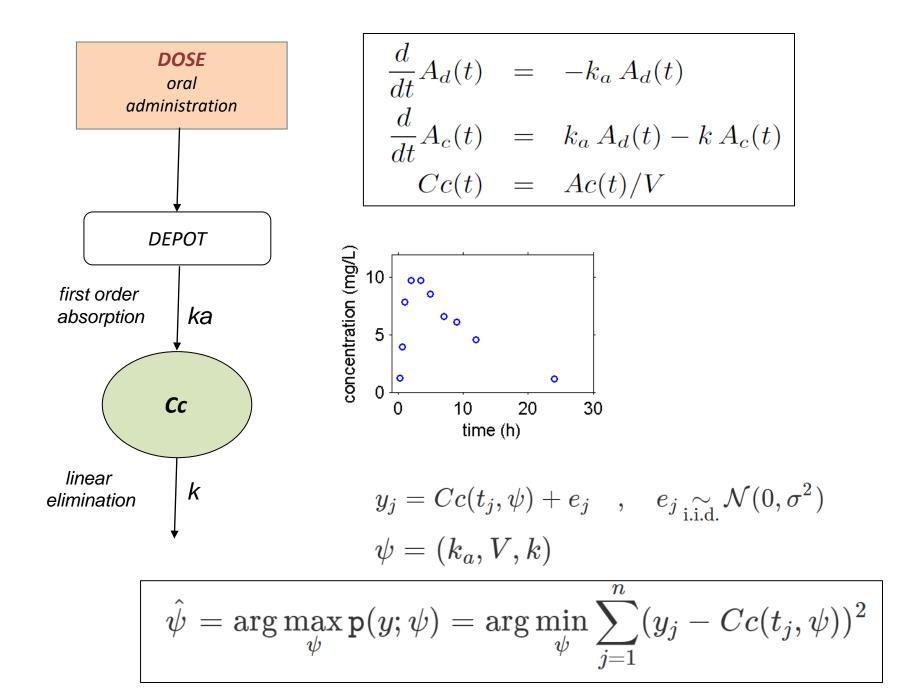
$$\frac{d}{dt}A_{d}(t) = -k_{a} A_{d}(t)$$

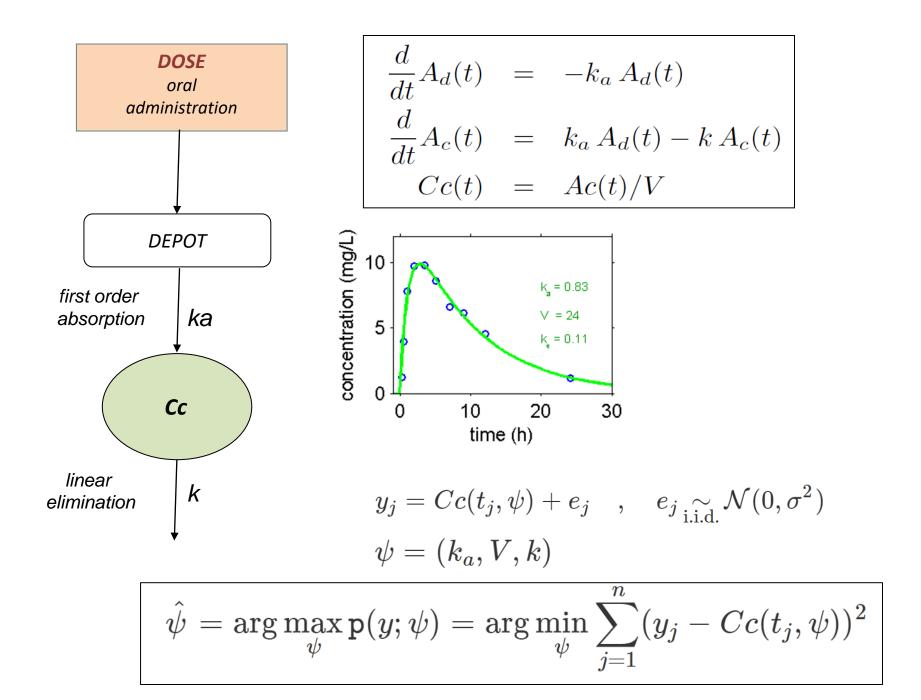
$$\frac{d}{dt}A_{c}(t) = k_{a} A_{d}(t) - k A_{c}(t)$$

$$Cc(t) = Ac(t)/V$$

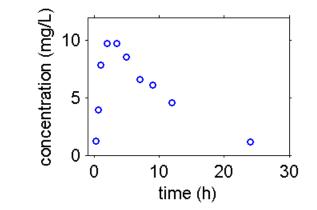


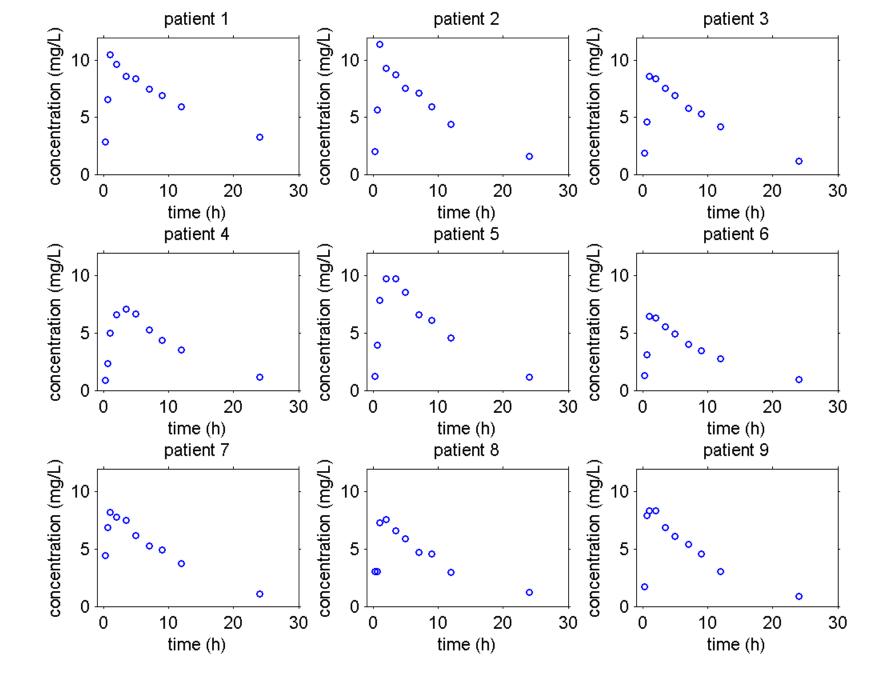
$$egin{aligned} y_j &= Cc(t_j,\psi) + e_j \quad, \quad e_j \mathop{\sim}\limits_{ ext{i.i.d.}} \mathcal{N}(0,\sigma^2) \ \psi &= (k_a,V,k) \end{aligned}$$





The population approach





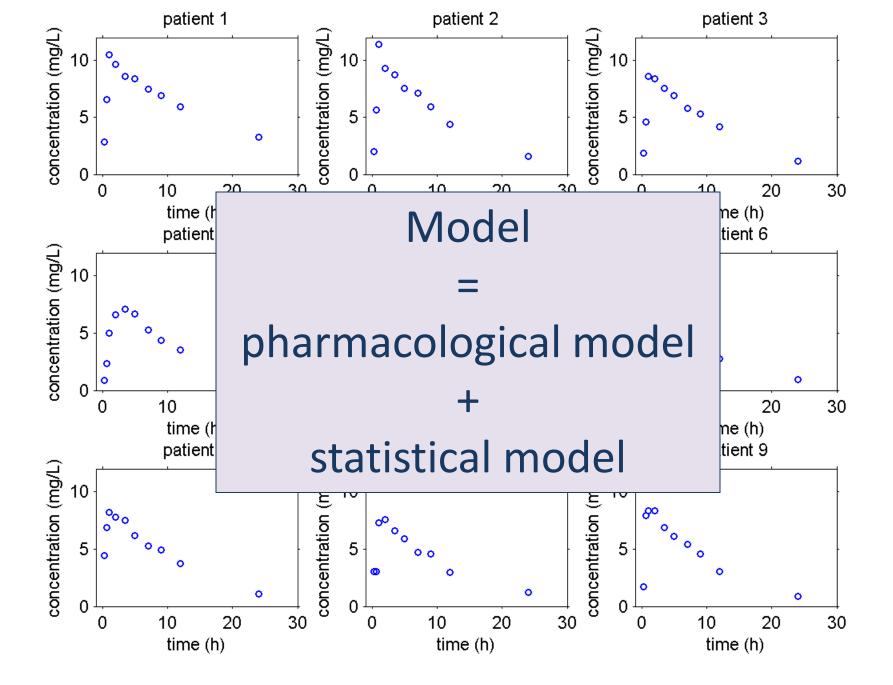
$$\frac{d}{dt}A_d(t) = -k_a A_d(t)$$

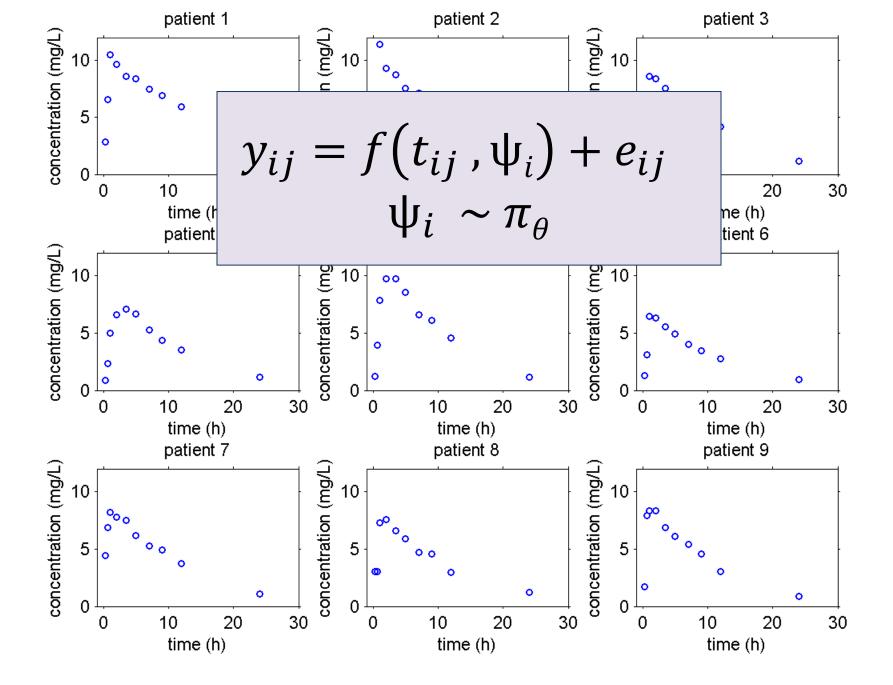
$$\frac{d}{dt}A_c(t) = k_a A_d(t) - k A_c(t)$$

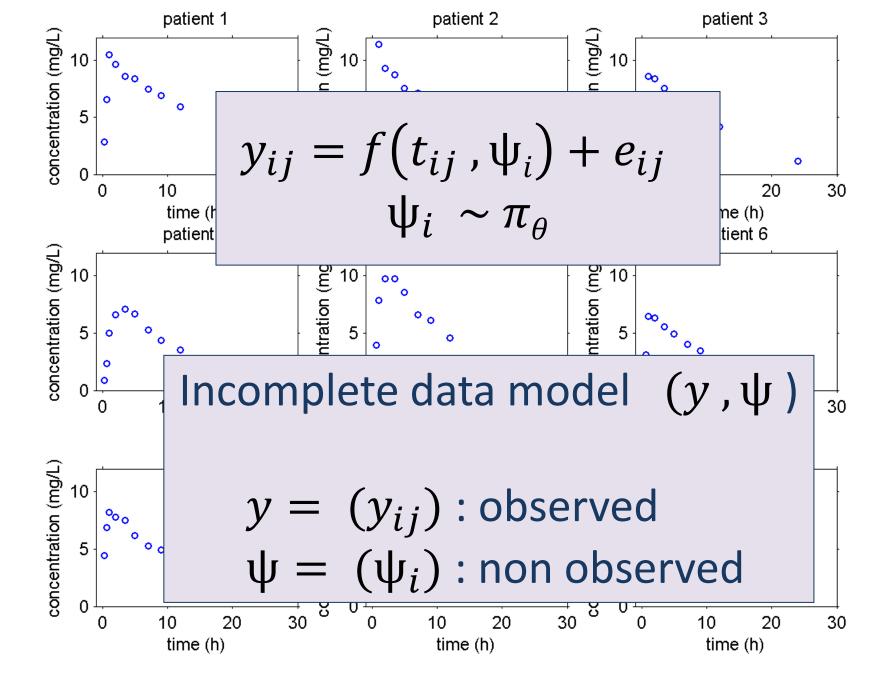
$$Cc(t) = Ac(t)/V$$

$$y_{ij} = Cc(t_{ij},\psi_i) + e_{ij} ~~,~~ 1 \leq i \leq N ~,~ 1 \leq j \leq n_i$$

 $\psi_i = (k_{a_i}, V_i, k_i)$: vector of individual parameter randomly distributed around some *typical value* $\psi_{
m pop}$







$$y_{ij} = f(t_{ij}, \psi_i) + e_{ij}$$

$$\psi_i \sim \pi(\cdot, \theta)$$

Some tasks to perform with this model...

1 Model exploration

- sensitivity analysis,
- visual exploration,
- 2 Parameter estimation
 - **population** parameters θ ,
 - Fisher Information matrix,
 - individual parameters (ψ_i) ,
- 3 Model evaluation
 - model diagnostic,
 - statistical tests

4 Simulation

clinical trial simulation

Since ψ is not observed, $\log p(y, \psi; \theta)$ cannot be used for estimating θ . Then

Iteration k of the algorithm:

step E : evaluate the quantity

 $Q_k(\theta) = \mathbb{E}[\log p(y, \psi; \theta) | y; \theta_{k-1}]$

step M : update the estimation of θ :

 $\theta_k = Argmax \ Q_k(\theta)$

Iteration k of the algorithm:

■ step E :

Simulation: draw the non observed data $\psi^{(k)}$ with the conditional distribution $p(\psi | y; \theta_{k-1})$

Stochastic approximation:

$$Q_k(\theta) = Q_{k-1}(\theta) + \gamma_k \left[\log p(y, \psi^{(k)}; \theta) - Q_{k-1}(\theta) \right]$$

 (γ_k) is a decreasing sequence: $\sum \gamma_k = +\infty$, $\sum \gamma_k^2 < +\infty$.

■ step M:

Maximisation: update the estimation of θ

$$\theta_k = Argmax \ Q_k(\theta)$$

Convergence is improved by running several Markov chains for each individual

$$Q_k = Q_{k-1}(\theta) + \gamma_k \left(\frac{1}{L} \sum_{\ell=1}^L \log p(y, \psi^{(k,\ell)}; \theta) - Q_{k-1}(\theta) \right)$$

\$\gamma_k = 1\$ and \$L\$ "large": MCEM algorithm
 when \$L\$ is large, SAEM looks more and more like EM

Estimation of the observed likelihood

An Importance Sampling method

$$\begin{split} \ell(\theta; y) &= p(y; \theta) \\ &= \int \left(p(y|\psi) \frac{\pi_{\theta}(\psi)}{\tilde{\pi}_{\theta}(\psi)} \right) \tilde{\pi}_{\theta}(\psi) d\psi \\ &= \mathbb{E}_{\tilde{\pi}_{\theta}} \left(p(y|\psi) \frac{\pi_{\theta}(\psi)}{\tilde{\pi}_{\theta}(\psi)} \right) \end{split}$$

Then, $\mathbb{E}_{\tilde{\pi}_{\theta}}(p(y|\psi))$ can be estimated by Monte-Carlo: 1 Draw $\psi^{(1)}, \psi^{(2)}, \dots, \psi^{(M)}$ with the marginal distribution $\tilde{\pi}_{\theta}$ 2 Let

$$\hat{\ell}_M(\theta; y) = \frac{1}{M} \sum_{j=1}^M p(y|\psi^{(j)}) \frac{\pi_\theta(\psi^{(j)})}{\tilde{\pi}_\theta(\psi^{(j)})}$$

$$\mathbb{E}\left(\hat{\ell}_{M}(\theta; y)\right) = \ell(\theta; y) \text{ and } \operatorname{Var}\left(\hat{\ell}_{M}(\theta; y)\right) = \mathcal{O}(1/M)$$

Hypothesis testing in incomplete data models

Model to test: \mathcal{M}_o

- 1) Fit model \mathcal{M}_o to the data (*e.g.* by estimating the parameters of the model by maximum likelihood estimation)
- 2) Draw individual parameters with the conditional distributions $p(\psi_i \mid y_i \; ; \; \widehat{\mathcal{M}}_0)$
- 3) Use the "completed" data $(\psi^{(s)}, y)$ to test the components of model \mathcal{M}_o

Model to test: \mathcal{M}_o

- 1) Fit model \mathcal{M}_o to the data (*e.g.* by estimating the parameters of the model by maximum likelihood estimation)
- 2) Draw individual parameters with the conditional distributions $p(\psi_i \mid y_i \; ; \; \widehat{\mathcal{M}}_0)$
- 3) Use the "completed" data $(\psi^{(s)}, y)$ to test the components of model \mathcal{M}_o

$$p(\psi_i) = \int p(\psi_i | y_i) p(y_i) dy_i$$
$$= \mathbb{E}_{y_i} \left(p(\psi_i | y_i) \right).$$

$$y_{ij} = f(t_{ij}, \psi_i) + g(t_{ij}, \psi_i, \xi) \varepsilon_{ij} , \quad \varepsilon_{ij} \sim \mathcal{N}(0, 1)$$
$$h(\psi_i) = h(\psi_{\text{pop}}) + \beta c_i + \eta_i , \quad 1 \le i \le N , \quad \eta_i \sim \mathcal{N}(0, \Omega)$$

Components of the model to be tested

- the structural model f,
- the form of the residual error model g,
- the transformation of the individual parameters h,
- the list of the covariates c_i for each individual parameter,
- the structure of the variance-covariance matrix Ω .

Testing the covariate model

 $h(\psi_i) = h(\psi_{\text{pop}}) + \beta c_i + \eta_i$

We aim to test H_0 : " $\beta = 0$ " v.s. H_1 : " $\beta \neq 0$ "

Let $\psi_i^{(1)}, \psi_i^{(2)}, \dots \psi_i^{(M)}$ be M (possibly conditionally dependent) samples of $p(\psi_i|y_i)$. Let

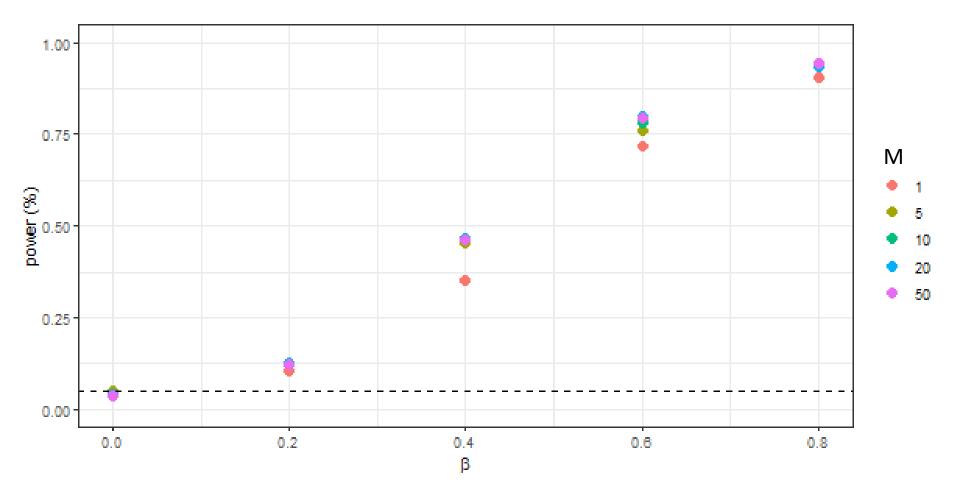
$$\overline{h(\psi_i)} = \frac{1}{M} \sum_{m=1}^M h(\psi_i^{(m)})$$

Then,

$$\overline{h(\psi_i)} = h(\psi_{\text{pop}}) + \beta c_i + \overline{\eta_i}$$

We can then use $(\overline{h(\psi_i)}, 1 \le i \le N)$ for testing H_0 (t test, F test, Pearson correlation test,...)

Testing the covariate model - Monte Carlo experiment



Testing the correlation model

$$\eta_i = (\eta_{k,i}, 1 \le k \le p)$$

We aim to test H_0 : " $\mathbb{E}(\eta_{k,i}\eta_{\ell,i}) = 0$ " v.s. H_1 : " $\mathbb{E}(\eta_{k,i}\eta_{\ell,i}) \neq 0$ "

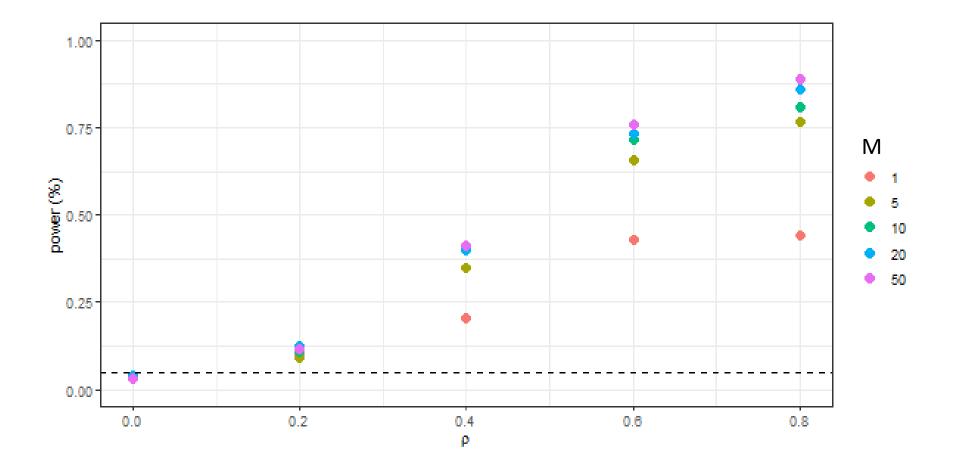
Let $(\eta_i^{(1)}, \ldots, \eta_i^{(M)})$ be M (possibly conditionally dependent) samples of $p(\eta_i \mid y_i)$. Let

$$\overline{\eta_{kl,i}} = \frac{1}{M} \sum_{m=1}^{M} \eta_{k,i}^{(m)} \eta_{\ell,i}^{(m)}$$

Then, under H_0 , the $\overline{\eta_{kl,i}}$ are i.i.d with $\mathbb{E}(\overline{\eta_{kl,i}}) = 0$.

We can then use $(\overline{\eta_{kl,i}}, 1 \le i \le M)$ for testing H_0 (e.g. t-test)

Testing the correlation model - Monte Carlo experiment



Incomplete data model building

Initial model: \mathcal{M}_o

- 1) Fit model \mathcal{M}_o to the data (*e.g.* by estimating the parameters of the model by maximum likelihood estimation)
- 2) Draw individual parameters with the conditional distributions $p(\psi_i \mid y_i; \widehat{\mathcal{M}}_0)$

Initial model: \mathcal{M}_o

- 1) Fit model \mathcal{M}_o to the data (*e.g.* by estimating the parameters of the model by maximum likelihood estimation)
- 2) Draw individual parameters with the conditional distributions $p(\psi_i \mid y_i; \widehat{\mathcal{M}}_0)$
- 3) Use the "completed" data $(\psi^{(s)}, y)$ to build a new model \mathcal{M}_I

Repeat this procedure until convergence, i.e. \mathcal{M}_{k+1} "=" \mathcal{M}_k

Objective: select a particular model $\widehat{\mathcal{M}}$ in a (possibly very large) set of models \mathbb{M} . Penalized likelihood approach:

$$U(\mathcal{M}, y) = -2\log(p(y; \mathcal{M})) + pen(\mathcal{M})$$
$$\widehat{\mathcal{M}} = \arg\min_{\mathcal{M}\in\mathbb{M}} U(\mathcal{M}, y)$$

 $p(y; \mathcal{M})$: pdf of the observations $pen(\mathcal{M})$: penalty term Penalized version of the *complete log-likelihood*:

$$V(\mathcal{M}, y, \psi) = -2\log\left(p(y, \psi; \mathcal{M})\right) + pen(\mathcal{M}).$$

We can then define the following Expectation-Maximization (EM) algorithm:

- An initial model \mathcal{M}_0 is chosen
- At iteration k
 - E-step: compute

$$Q(\mathcal{M}, \mathcal{M}_{k-1}) = \mathbb{E}\left(V(\mathcal{M}, y, \psi) \,|\, y, \mathcal{M}_{k-1}\right)$$

- M-step: compute

$$\mathcal{M}_k = \arg\min_{\mathcal{M}\in\mathbb{M}} Q(\mathcal{M}, \mathcal{M}_{k-1})$$

Proposition Under very general conditions, $(U(\mathcal{M}_k), k \ge 0)$ is a decreasing sequence.

Stochastic Approximation version of EM (SAEM):

At iteration k,

- Simulation step: a single realization ψ^(k) is drawn with the conditional distribution p(ψ|y; M_{k-1}).
- Expectation step: $Q(\mathcal{M}, \mathcal{M}_{k-1})$ is approximated by

$$Q^{(k)}(\mathcal{M}) = Q^{(k-1)}(\mathcal{M}) + \gamma_k \left(V(\mathcal{M}, y, \psi^{(k)}) - Q^{(k-1)}(\mathcal{M}) \right).$$

• Maximization step:

$$\mathcal{M}_k = \arg\min_{\mathcal{M}\in\mathbb{M}} Q^{(k)}(\mathcal{M})$$

 (γ_k) is a decreasing sequence s.t. $\sum \gamma_k = \infty$ and $\sum \gamma_k^2 = \infty$.

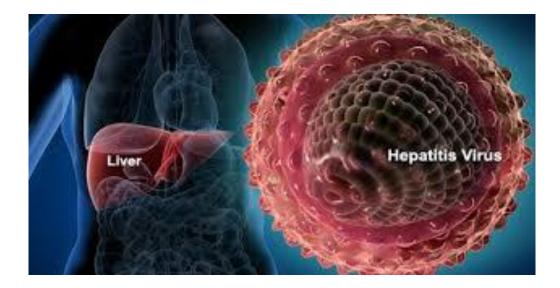
Comparison of SCM, COSSAC and SAMBA

	SCM		COSSAC		SAMBA	
WarfarinPK	678.3	44	678.3	4	678.3	2
RemifentanilPK	6986.4	295	6986.7	13	6987.2	4
TheophyllinePK	371.2	12	371.2	4	371.2	2
QuinidineSparsePK	1241.8	22	1241.8	11	1241.8	1
TobramycinSparsePK	593.4	22	593.4	6	597.6	2
TheophyllineExtRelPK	485.9	98	501.2	8	474.2	6
WarfarinPKPD	2169.6	92	2169.6	10	2168.2	2
Cholesterol	9898.7	12	9898.7	5	9912.2	2
Alzheimer	16989.5	73	16994	8	16995.5	2
Tranexamic	5753.2	298	5753.2	12	5753.2	2

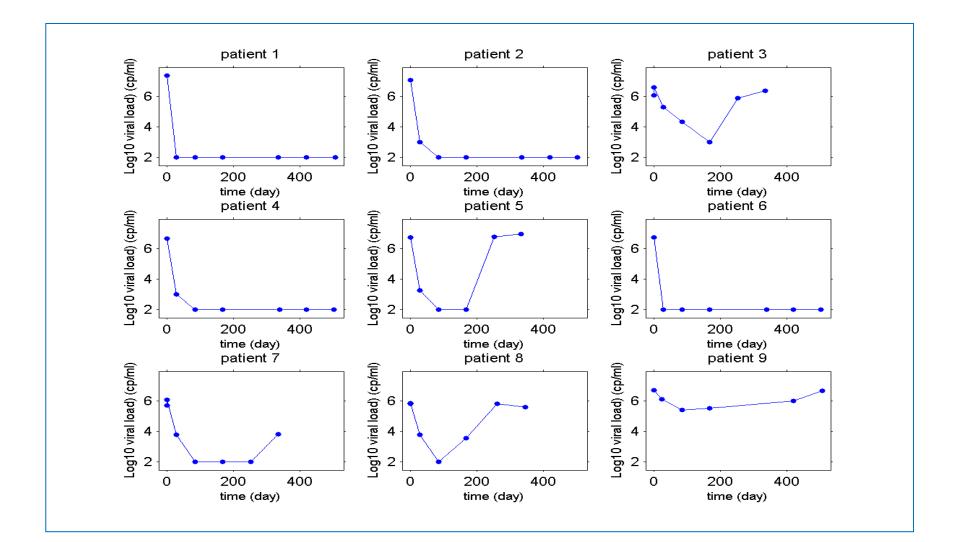
(BIC of the selected model, Number of runs)

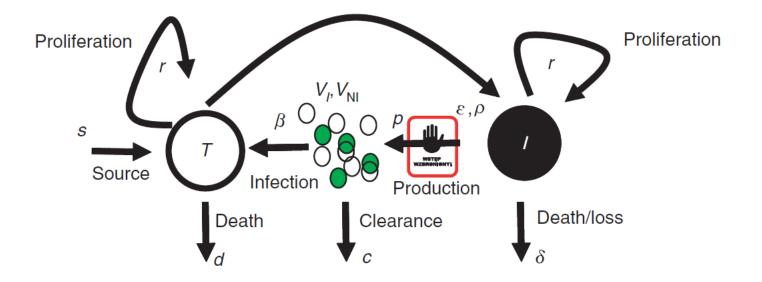
Viral load modelling

Hepatitis C



Some hepatitis C viral loads

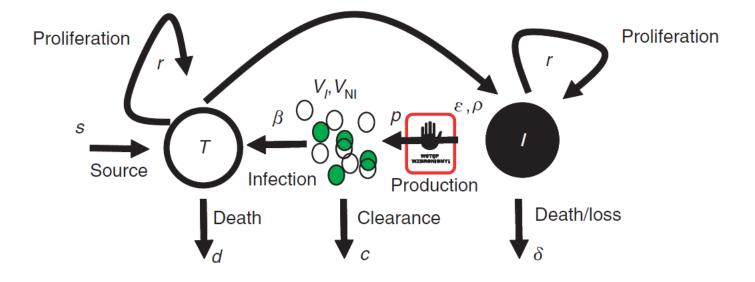




Clin Pharmacol Ther. 2010 Jun;87(6):706-13. doi: 10.1038/clpt.2010.35. Epub 2010 May 12.

A comprehensive hepatitis C viral kinetic model explaining cure.

Snoeck E¹, Chanu P, Lavielle M, Jacqmin P, Jonsson EN, Jorga K, Goggin T, Grippo J, Jumbe NL, Frey N.

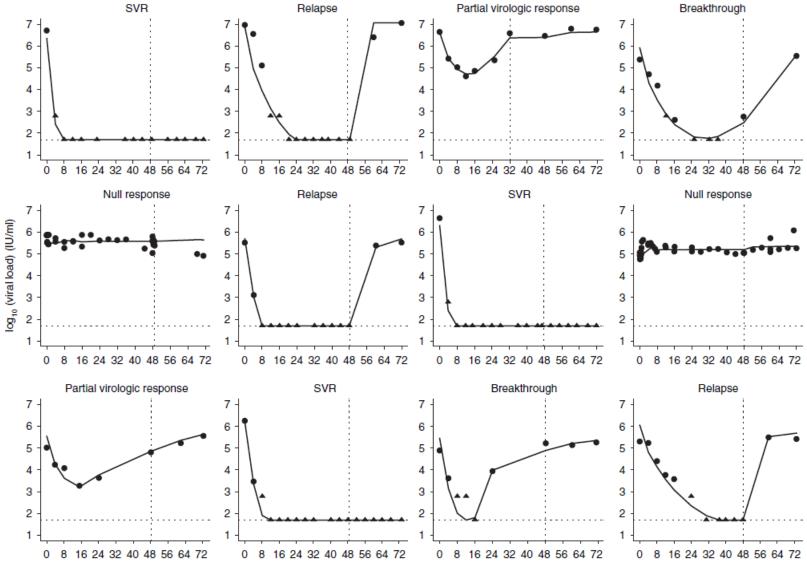


$$\frac{\mathrm{d}T}{\mathrm{d}t} = s + r \cdot T \cdot \left(1 - \frac{T + I}{T_{\mathrm{max}}}\right) - d \cdot T - \beta \cdot V_I \cdot T$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta \cdot V_I \cdot T + r \cdot I \cdot \left(1 - \frac{T+I}{T_{\mathrm{max}}}\right) - \delta \cdot I$$

$$\frac{\mathrm{d}V_I}{\mathrm{d}t} = (1-\rho) \cdot (1-\varepsilon) \cdot p \cdot I - c \cdot V_I$$

$$\frac{\mathrm{d}V_{\mathrm{NI}}}{\mathrm{d}t} = \rho \cdot (1 - \varepsilon) \cdot p \cdot I - c \cdot V_{\mathrm{NI}}$$



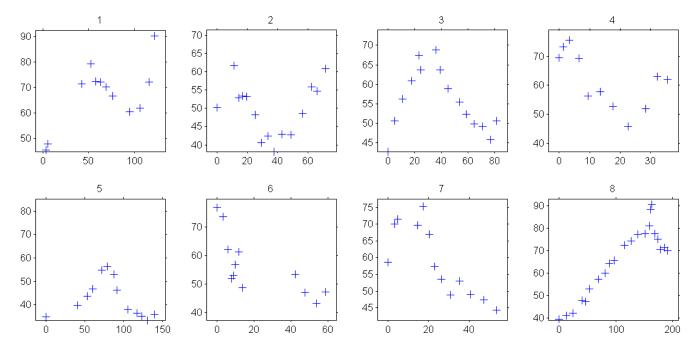
Tumor growth modelling

Low-grade glioma

Tumor sizes of 8 patients under treatment

Same observed pattern for the tumor sizes of different patients:

- tumor size increases before treatment starts,
- decreases during treatment period,
- increases when treatment stops



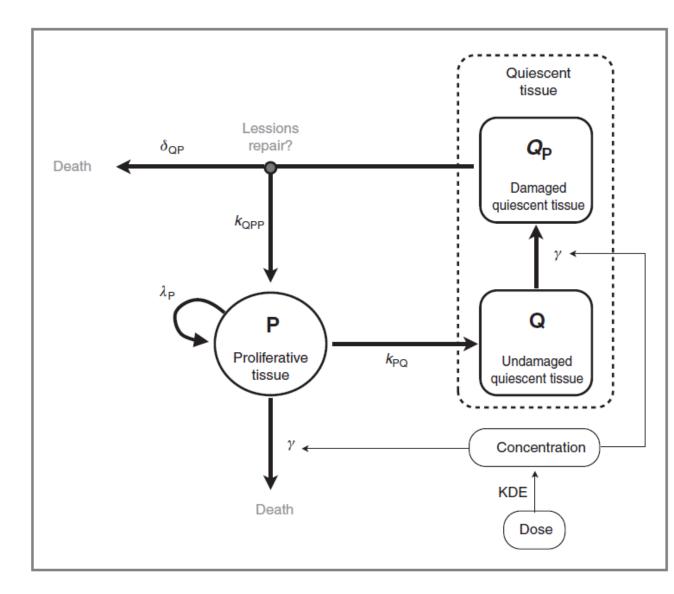


Figure 2. Schematic view of the model. P denotes the proliferative tissue and Q the nonproliferative or quiescent tissue. Proliferative tissue is assumed to transition to quiescence at a rate constant k_{PO} . The treatment concentration, calculated from the individual dose through an exponential decay with the rate constant KDE, affects both proliferative and guiescent tissue. The tissue composed of cells in proliferation (P) is directly eliminated because of lethal DNA damages induced by the treatment. Nonproliferative tissue (Q) is also subject to DNA damages due to the treatment. When reentering the cell cycle, the DNAdamaged quiescent cells (Q_P) can either repair their DNA damages and return to a proliferative state (P) or die because of unrepaired damages.

The structural model:

$$\frac{dC}{dt} = -KDE \times C + dose input$$

$$\frac{dP}{dt} = \lambda_p \times P\left(1 - \frac{P^*}{K}\right) + k_{Q_pP} \times Q_P - k_{PQ} \times P - \gamma_P \times C \times KDE \times P$$

$$\frac{dQ}{dt} = k_{PQ}P - \gamma_Q \times C \times KDE \times Q$$

$$\frac{dQ_P}{dt} = \gamma_Q \times C \times KDE \times Q - k_{Q_PP}Q_P - \delta_{QP} \times Q_P$$

$$P^* = P + Q + Q_P$$

The statistical model:

$$y_{ij} = P^{*}(t_{ij}, \psi_{i}) + e_{ij}$$

$$\psi_{i} \sim \pi(\cdot, \theta)$$

IMPLEMENTATION DU MODELE

[LONGITUDINAL]

input = {K, KDE, KPQ, KQPP, LAMBDAP, GAMMA, DELTAQP, PTO, QO, a}
PK:
depot(target = C)
EQUATION:
t0 = 0
PT_0 = PT0
Q_0 = Q0
PSTAR = PT+Q+QP
ddt_C = -KDE*C
ddt_PT = LAMBDAP*PT*(1-PSTAR/K) + KQPP*QP - KPQ*PT - GAMMA*KDE*PT*C
ddt_Q = KPQ*PT - GAMMA*KDE*Q*C
ddt_QP = GAMMA*KDE*Q*C - KQPP*QP - DELTAQP*QP
DEFINITION:
y ={distribution=normal, prediction=PSTAR, sd=a}

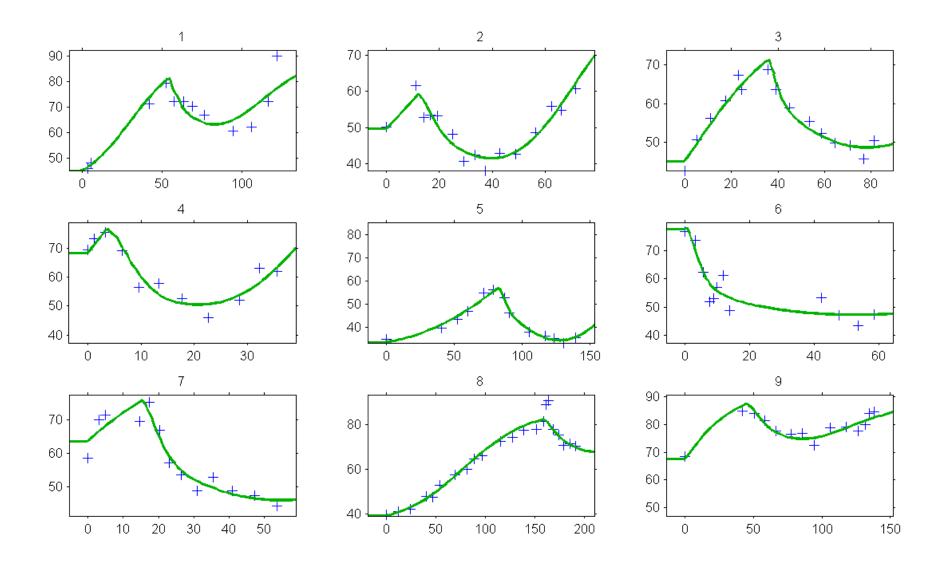
[INDIVIDUAL]

input={PT0_pop,omega_PT0,Q0_pop,omega_Q0, KPQ_pop,omega_KPQ,KQPP_pop, omega_KQPP, LAMBDAP_pop,omega_LAMBDAP,GAMMA_pop,omega_GAMMA,DELTAQP_pop,omega_DELTAQP}

DEFINITION:

KPQ	=	{distribution=lognormal,	prediction=KPQ_pop,	sd=omega_KPQ}
KQPP	=	{distribution=lognormal,	prediction=KQPP_pop,	sd=omega_KQPP}
LAMBDAP	=	{distribution=lognormal,	prediction=LAMBDAP_pop,	sd=omega_LAMBDAP}
GAMMA	=	{distribution=lognormal,	prediction=GAMMA_pop,	sd=omega_GAMMA}

Some individual fits



PBPK modelling (Phisiologically based Pharmacokinetics

