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Framework

In this talk, we consider the following black-box model :

Y = f (V1, . . . ,Vp),

where f : E =E1×E2×·· ·×Ep →Rk is an unknown and
deterministic function.

Main assumptions

1 V1, . . . ,Vp are independent.

2 E[‖Y ‖2]<∞.

3 Y is scalar (here, for sake of simplicity).
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The so-called Sobol’ indices

Classically to quantify the amount of randomness that a variable or
a group of variables bring to Y , one computes the so-called Sobol’
indices.

For instance, the first order Sobol’ and the total Sobol’ indices
with respect to Vu = (Vi , i ∈ u) is given by

Su = Var(E[Y |Vu])

Var(Y )
and Su,Tot = 1−S∼u = 1− Var(E[Y |V∼u])

Var(Y )

(assuming Y is scalar).

Such indices stem from the Hoeffding decomposition of the
variance of f (or equivalently Y ) that is assumed to lie in L2.
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Pick-Freeze estimation of Sobol’ indices (I)

To fix ideas assume for example p = 5, u= {1,2} so that
∼ u= {3,4,5}.
We consider the Pick-Freeze variable Yu defined as follows :

draw V = (V1,V2,V3,V4,V5),

build V u = (
V1,V2,V ′

3,V ′
4,V ′

5

)
.

Then, we compute

Y = f (V ),

Y u = f (V u).

A small miracle

Var(E[Y |X ])= Var(E[Y |Vu])= Cov(Y ,Y u) so that Su = Cov(Y ,Y u)

Var(Y )
.
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Pick-Freeze estimation of Sobol’ indices (II)

In practice, generate two n-samples :

one n-sample of V : (Vj)j=1,...,n,

one n-sample of V u :
(
V u
j

)
j=1,...,n

.

Compute the code on both samples :

Yj = f (Vj) for j = 1, . . . ,n,

Y u
j = f (V u

j ) for j = 1, . . . ,n.

Then estimate Su by

Su
n,PF =

1
n

∑n
j=1YjY

u
j −

(
1
n

∑n
j=1Yj

)(
1
n

∑n
j=1Y

u
j

)
1
n

∑n
j=1(Yj)2−

(
1
n

∑n
j=1Yj

)2
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Pick-Freeze scheme (III) : some statistical properties

Is the Pick-Freeze estimator a“good”estimator of the Sobol’
index ?

Is it consistent ? Response : YES SLLN.

If yes, at which rate of convergence ? Resp. : YES CLT (cv inp
n).

Is it asymptotically efficient ? Resp. : YES.

Is it possible to measure its performance for a fixed n ?
Response : YES Berry-Esseen and/or concentration
inequalities.

Ref. : A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur. “ Asymptotic
normality et efficiency of a Sobol’ index estimator”, ESAIM P&S, 2013.

F. Gamboa, A. Janon, T. Klein, A. Lagnoux, and C. Prieur. “ Statistical

Inference for Sobol’ Pick Freeze Monte Carlo method”, Statistics, 2015.
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Drawbacks of the Pick-Freeze estimation

The cost (= number of evaluations of the function f ) of the
estimation of the p first-order Sobol’ indices is quite
expensive : (p+1)n.

This methodology is based on a particular design of
experiment that may not be available in practice. For
instance, when the practitioner only has access to real data.

t We are interested in an estimator based on a n-sample only.
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Mighty estimation based on ranks (I)

Here we assume that the inputs Vi for i = 1, . . . ,p are scalar and we
want to estimate the Sobol’ index S i with respect to X =Vi :

S i = Var(E[Y |Vi ])

Var(Y )
= Var(E[Y |X ])

Var(Y )
.

To do so, we consider a n-sample of the input/output pair (X ,Y )
given by

(X1,Y1),(X2,Y2), . . . ,(Xn,Yn).

The pairs (X(1),Y(1)),(X(2),Y(2)), . . . ,(X(n),Y(n)) are rearranged in
such a way that

X(1) < . . . <X(n).
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Mighty estimation based on ranks (II)

We introduce

S i
n,Rank =

1
n

∑n−1
j=1 Y(j)Y(j+1)−

(
1
n

∑n
j=1Yj

)2
1
n

∑n
j=1Y

2
j −

(
1
n

∑n
j=1Yj

)2 .

Statistical properties

Consistency : OK.

Central Limit Theorem : OK.

Ref. : S. Chatterjee. “A new coefficient of Correlation”, JASA, 2020.

F. Gamboa, P. Gremaud, T. Klein, and A. Lagnoux. “ Global Sensitivity

Analysis : a new generation of mighty estimators based on rank statistics”,

Bernoulli. 2022.
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Efficient estimation based on kernels
Ref. : S. da Veiga and F. Gamboa. “Efficient estimation of sensitivity indices”,
Journal of Nonparametric Statistics, 2013.

Here again we assume that the inputs Vi for i = 1, . . . ,p are scalar.

To do so, the initial n-sample is split into two samples of sizes

n1 = bn/lognc ⇒ estimation of the joint density of (V ,Y )

n2 = n−n1 ≈ n ⇒ Monte-Carlo estimation of the integral
involved in the quantity of interest.

Statistical properties

Consistency : OK.

Central Limit Theorem : OK.

Asymptotic efficiency : OK.
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Estimation based on nearest neighbors
Ref. : L. Devroye, L. Györfi, G. Lugosi, and H. Walk. “A nearest neighbor
estimate of the residual variance”, EJS, 2018.

Here the input X with respect we want to compute the Sobol’
index is allowed to have dimension d .

To do so, the initial n-sample is split into two samples of sizes

n/2 ⇒ estimation of the regression function E[Y |X = x ] using
the first NN of x among the points of the first sample ;

n/2 ⇒ plug-in estimator.

Statistical properties

Consistency : OK

Central Limit Theorem : OK only for d É 3.
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Introduction

Recall that

SX = Var(E[Y |X ])

Var(Y )

allowing a multidimensional X living in a compact set : X ∈D ⊂Rd .

To estimate E[Y ] and Var(Y ) from the n-sample (Yj)j=1,...,n of the
output Y , we will naturally use the classical empirical mean and
variance respectively.

t Thus we focus on the estimation of E[E[Y |X ]2] from the
n-sample (Xj ,Yj)j=1,...,n of the pair (X ,Y ).
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Introduction

A natural estimator inspired from the NN and kernel-based plug-in
estimators would be(

n

2

)−1 ∑
1Éj<j ′Én

YjYj ′

2

(
Khn(Xj ′ −Xj)

fX (Xj)
+ Khn(Xj −Xj ′)

fX (Xj ′)

)

for a bandwidth hn > 0 and a kernel Khn .

Nevertheless, boundary issues appear when the input domain is
compact.
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New estimation based on kernels

To bypass this issue, we consider the following kernel-based
estimator

Tn,hn =
(
n

2

)−1 ∑
1Éj<j ′Én

YjYj ′

2

(
Khn ◦AXj

(Xj ′ −Xj)

fX (Xj)
+
Khn ◦AXj ′ (Xj −Xj ′)

fX (Xj ′)

)
.

for a bandwidth hn > 0, a mirror-type transformation Ax , and a
kernel Khn .

We introduce the functions

g1(x)= E[Y |X = x ] and g2(x)= E[Y 2|X = x ].

The supremum norm is denoted by ‖·‖∞.
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Multi-index notation and smoothness

For any d and β= (β1, . . . ,βd) ∈Rd+, we define the integer part of β
by

bβc = (bβ1c, . . . ,bβd c)=: γ ∈Nd .

In addition, we introduce, for any v ∈Rd ,

|γ| = γ1+·· ·+γd , γ!= γ1! . . .γd !, and vβ = v
β1

1 . . .vβd

d .

Let α> 0. We define C α(D)= {φ : D →R with derivatives up to
order bαc and partial derivative of order bαc is α−bαc-Hölder}.
Namely, there exists Cφ > 0 such that, for any x and x ′ ∈D, one has∣∣∣∣∣∂βφ∂xβ

(x)− ∂βφ

∂xβ
(x ′)

∣∣∣∣∣ÉCφ
∥∥x −x ′

∥∥α−bαc∞

for any β ∈Nd such that |β| = bαc.
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Assumptions

(A 1) Support The support of inputs V = (V1, . . . ,Vp) is of the form
[B1,C1]×·· ·× [Bp ,Cp] where Bi <Ci for all 1É i É p.

(A 2) Absolute continuity The distribution of the random vector
(V ,Y ) ∈Rp×R is absolutely continuous with respect to the
Lebesgue measure. The marginal pdf of (X ,Y ), V , X , and W
are denoted by fX ,Y , fV , fX , and fW respectively.

(A 3) Kernel Let K : Rd →R be a kernel with support included in D

such that ‖K‖∞ <+∞ and
∫
D K (u)du = 1. We assume that K

is of order bαc which means that
∫
D uβK (u)du = 0 for any

β ∈Nd such that 0< |β| É bαc. Finally, we define
Kh(x)=K (x/h)/hd for any x ∈D.

(A 4) Bandwidth The sequence (hn)n∈N of bandwidths is positive
and hn → 0 as n→∞.
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Mirror-type transformation

The next definition allows to circumvent the boundary issues.

(D1) For x ∈D, we define

Ax :
{ Rd → Rd

u = (u1, . . . ,ud) 7→ (σ1(x1)u1, . . . ,σd(xd)ud)

with σi (s) := 1−21(
Bi+Ci

2 ,Ci

)(s) ∈ {−1,1}.

Observe that A = {Ax ,x ∈D} is a finite subset of GLd(R),
A = {A1, . . . ,Aκ}, with cardinal κ= 2d . Moreover, it satisfies

(i) for any `= 1, . . . ,κ,
∣∣det(A`)

∣∣= 1 ;
(ii) Mirror condition : for any x ∈D, there exists A` ∈A such that

Ax =A` and x +A−1
x ([0,1/2]d )⊂D.
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0

1

1

Mirror-type transformation

D = [0,1]2

x = (1/3,3/4)

y = (2/3,1/5)

u

Ax (u)

v

Ax (v)

wAy (w)

zAy (z)

u1

u2
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Theorem (Bias and quadratic controls)

I.1. Assume that g1 ∈ L1(D), g1fX ∈C α(D), and∫
D

∣∣∣g1(x)
∂β(g1fX )
∂xβ

(x)
∣∣∣dx <∞ for any β such that 1É |β| < bαc. Then

we have ∣∣∣E[Tn,hn ]−E[E[Y |X ]2]
∣∣∣ÉChαn .

I.2. Assume in addition that g1 ∈C α(D), g2/fX ∈ L1(D)∩L2(D)

and g2fX ∈ L2(D), and
∫
D g2(x)

∣∣∣∣∂β(g1fX )∂xβ
(x)

∂β
′
(g1fX )

∂xβ′
(x)

∣∣∣∣dx <∞ for

any β and β′ such that 1É ∣∣β∣∣ ,
∣∣β′∣∣< bαc. Then we have

E
[(
Tn,hn −E[Tn,hn ]− 1

n

n∑
j=1

Zj
)2]ÉCh2αn + C

hdnn2
.

where, for j = 1, . . . ,n, Zj = 2(Yjg1(Xj)−E[E[Y |X ]2]).
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Theorem (Central Limit Theorem)

II. Assuming in addition that E[Y 4]<∞, α> d/2, hn →
n→∞ 0,

nhdn →
n→∞∞, and nh2αn →

n→∞ 0, we get

p
n
(
Tn,hn −E[E[Y |X ]2]

)
D−−−−→

n→∞ N (0,4τ2)

with τ2 = Var(Yg1(X )).

Ref. : F. Gamboa, T. Klein, A. Lagnoux, C. Prieur, and S. da Veiga. “New

estimation of Sobol’ indices based on kernels”. Available on Hal and Arxiv

(2023). https://hal.science/hal-04052837.

https://hal.science/hal-04052837
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Using the delta method, we are now able to get the asymptotic
behavior of the estimation of SX .

Corollary (CLT for the estimation of the Sobol’ indices)

Under all the assumptions of the theorem (II included), one has

p
n

 Tn,hn −
(
1
n

∑n
j=1Yj

)2
1
n

∑n
j=1Y

2
j −

(
1
n

∑n
j=1Yj

)2 −SX

 D−−−−→
n→∞ N (0,σ2),

where the limit variance σ2 has an explicit expression.
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Using one more time the delta method, we deduce the asymptotic
behavior of the vector containing the p first-order Sobol’ indices.
Let us denote S i the first-order Sobol index associated to the i-th
input and its estimator Ŝ i given by :

Ŝ i =
Tn,hn −

(
1
n

∑n
j=1Yj

)2
1
n

∑n
j=1Y

2
j −

(
1
n

∑n
j=1Yj

)2 .

Corollary (CLT for the global estimation of the p first-order
Sobol’ indices)

Under all the assumptions of the theorem (II included), one has

p
n
(
(Ŝ1, . . . , Ŝp)T − (S1, . . . ,Sp)T

)
D−−−−→

n→∞ N (0,Σ),

where the limit variance Σ has an explicit expression.
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Also in the paper...

A procedure for bandwidth selection inspired from Delyon and
Portier in 2016.

An extension to unknown density fX in which we consider
• parametric estimation of fX ,
• nonparametric estimation of fX .
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Sketch of the proof (I)
Since Y ∈ L2(R), one has

E[Tn,h]=
Ï

D2

Kh ◦Ax1(x2−x1)

fX (x1)
fX (x1)fX (x2)g1(x1)g1(x2)dx1dx2

=
∫
D

∫
Dx

K (u)g1(x)g1(x +hA−1
x (u))fX (x +hA−1

x (u))dudx .

In addition,

E[E[Y |X ]2]= E[g2
1 (X )]=

∫
D
g1(x)2fX (x)dx =

Ï
D2

K (u)g1(x)2fX (x)dxdu

leading to E[Tn,h]−E[E[Y |X ]2]

=
Ï

D2
K (u)g1(x)

(
g1(x +hA−1

x (u))fX (x +hA−1
x (u))−g1(x)fX (x)

)
dxdu.
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Sketch of the proof (II)

For all j , j ′ = 1, . . . ,n, we introduce the symmetric function given by

R
((xj
yj

)
,

(
xj ′

yj ′

))
= yjyj ′

2

(Khn ◦Axj (xj ′ −xj)

fX (xj)
+
Khn ◦Axj ′ (xj −xj ′)

fX (xj ′)

)
.

Then the Hoeffding projections of R are given by (see Pena 1999)

π1R

(
x
y

)
=E

[
R

((x
y

)
,

(
X2

Y2

))]
−E

[
R

((X1

Y1

)
,

(
X2

Y2

))]
π2R

((x1
y1

)
,

(
x2
y2

))
=R

((x1
y1

)
,

(
x2
y2

))
−E

[
R

((x1
y1

)
,

(
X2

Y2

))]
−E

[
R

((x2
y2

)
,

(
X2

Y2

))]
+E

[
R

((X1

Y1

)
,

(
X2

Y2

))]
.
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Sketch of the proof (III)
Hence the Hoeffding decomposition writes

Tn,hn −E[Tn,hn ]= 2U
(1)
n (π1R)+U

(2)
n (π2R)

= 1

n

n∑
j=1

2(Yjg1(Xj)−E[E[Y |X ]2])︸ ︷︷ ︸
=Zj

+2U
(1)
n (π1R)− 2

n

n∑
j=1

(Yjg1(Xj)−E[E[Y |X ]2])︸ ︷︷ ︸
=S1

+U
(2)
n (π2R)︸ ︷︷ ︸

=S2

.

with U
(1)
n (π1R)= 1

n

n∑
j=1

(π1R)

(
Xj

Yj

)

U
(2)
n (π2R)= 2

n(n−1)

n∑
1Éj<j ′Én

(π2R)
((Xj

Yj

)
,

(
Xj ′

Yj ′

))
(Giné, Nikl ’08).
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Ishigami function

The Ishigami model is given by :

Y = f (V )= f (V1,V2,V3)= sin(V1)+7sin2(V2)+0.1V 4
3 sin(V1)

where (Vj)j=1,2,3 are i.i.d. uniform random variables on [−π;π].

One has
S1 = 0.3139, S2 = 0.4424, S3 = 0.
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Bratley function
Let us consider the Bratley function defined by :

g(V1, . . . ,Vp)=
p∑
i=1

(−1)i
i∏

j=1
Vj ,

with Vi ∼U ([0,1]) i.i.d. After some tedious calculations, one gets

Var(Y )= 1

18
− 2

45

(
−1

2

)p
+ 1

10

1

3p
− 1

9

1

22p

S i = Var[E(Y |Vi )]

Var(Y )
= 1

Var(Y )

(
2p−i+1− (−1)p−i+1

)2
22p ×33

.

Now let us compute the total indices for i = 1 and 2 and p = 5,

S1,Tot = 1− 1111

34×210×Var(Y )
≈ 0.77, S2,tot = 1− 3703

34×210×Var(Y )
≈ 0.22.
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