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Context

One of the PhD. goal: Theoretical characterization of what GSA (and XAI) methods quantify
when the inputs are not independent.

Traditionally in global sensitivity analysis (GSA), QoI decompositions have been shown using

a model-centric approach.

Recently, new indices inspired by cooperative game theory allowed to circumvent the

problem of dependence between inputs (Owen 2014; Herin et al. 2022).

It also allows apprehending QoI decompositions in a new light: the input-centric approach.

Both of these approaches are linked by a combinatorial mechanism: the Möbius inversion
formula.

Paving the way towards solutions for general QoI decomposition with dependent inputs.
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What is a coalitional decomposition ?

Definition (Coalitional decomposition of a quantity of interest).

Let X = (X1, . . . ,Xd)
⊤ be random inputs, and let G(X ) be a random output.

Let QoI(G(X )) be a quantity of interest (QoI) on the ouput.

Let D = {1, . . . , d}, and let P (D) denote the set of subsets of D (power-set).

If QoI(G(X )) can be written as:

QoI(G(X )) =
∑

A∈P(D)

ψ(A)

then the right-hand side of the equality is called a coalitional decomposition of QoI(G(X )).

Two ways to define coalitional decompositions: an input-centric approach and a

model-centric approach.

Let’s take an example with the variance decomposition.
2/19



Model-centric : Sobol’ indices

Let X1, . . . ,Xd be mutually independent inputs. Let G(X ) be real-valued random variable

such that V (G(X )) <∞.

From Hoeffding (1948), one has that:

L2(PX ) =
⊕

A∈P(D)

VA, and G(X ) =
∑

A∈P(D)

GA(XA)

where the summands are pairwise orthogonal.

Moreover, for any A ∈ P (D) (Da Veiga et al. 2021):

V (E [G(X ) | XA]) =
∑

B∈P(A)

V (GA(XA))

which implies that (Sobol’ 1990), ∀A ∈ P (D):

V (GA(XA)) =
∑

B∈P(A)

(−1)|A|−|B|V (E [G(X ) | XB ]) = V (G(X ))× SA,

and in particular (A = D),

V (G(X )) =
∑

A∈P(D)

V (GA(XA))
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Input-centric : Cooperative games for variance-based GSA

Now suppose that X1, . . .Xd are not mutually independent, and V (G(X )) <∞.

By analogy between Cooperative Game Theory and GSA, Owen (2014) proposed to view

dependent inputs as players, whose value is chosen to be:

v(A) = V (E [G(X ) | XA]).

The Harsanyi (1963) dividends of this game are, ∀A ∈ P (D):

ψ(A) =
∑

B∈P(A)

(−1)|A|−|B|V (E [G(X ) | XB ]),

and it implies that (Bilbao 2000), ∀A ∈ P (D):

V (E [G(X ) | XA]) =
∑

B∈P(A)

ψ(B),

and in particular (A = D),

V (G(X )) =
∑

A∈P(D)

ψ(A)
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Input-centric and Model-centric approaches for variance decomposition

(Traditional) Model-centric approach

X1, . . . ,Xd mutually independent.

Decompose G(X ) into orthogonal GA(XA).

One then has ∀A ∈ P (D):

V (E [G(X ) | XA]) =
∑

A∈P(D)

V (GA(XA)).

which implies that:

V (GA(XA)) =
∑

B∈P(A)

(−1)|A|−|B|V (E [G(X ) | XB ])

Input-centric approach

X1, . . . ,Xd not necessarily mutually independent.

Chose to value XA by V (E [G(X ) | XA]).

Set, ∀A ∈ P (D):

ψ(A) =
∑

B∈P(A)

(−1)|A|−|B|V (E [G(X ) | XB ]),

which implies that:

V (G(X )) =
∑

A∈P(D)

ψ(A)

If the inputs are actually mutually independent:

• ψ(A) = V (GA(XA)) and both approaches are equivalent.

• The input-centric approach did not require the GA(XA) to be pairwise orthogonal.
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Möbius inversion

How are both approaches linked ?

It is due to a generalization of the Möbius inversion formula to locally finite partially ordered
sets (Rota 1964).

One of the cornerstones of the field of combinatorics (Kung, Rota, and Hung Yan 2012).

The (very general) result of Rota admits a particular form when dealing with power-sets.

It can be understood as a generalization of the inclusion-exclusion principle.
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Möbius inversion on power-sets

Corollary (Möbius inversion on power-sets (Rota 1964; Kung, Rota, and Hung Yan 2012)).

Let D = {1, . . . , d}, and any two set functions:

f : P (D) → A, g : P (D) → A,

where A is an abelian group. Then the following equivalence holds:

f (A) =
∑

B∈P(A)

g(B), ∀A ∈ P (D) ⇐⇒ g(A) =
∑

BP(A)

(−1)|A|−|B|f (B), ∀A ∈ P (D) .

Three remarks:

• Left to right: traditional model-centric approach.
• Right to left: Input-centric approach.
• The set functions f and g can be valued in an abelian group, and not necessarily R:

we can generalize input-centric decompositions to a broad range of QoIs.

Examples of abelian groups: R, Rd
, spaces of matrices, polynomials, vector spaces...
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Möbius inversion mechanism

The Möbius inversion is a mechanical process.

Variance decomposition: Let’s compute
∑

A∈P(D)

∑
B∈P(A)(−1)|A|−|B|V (E [G(X ) | XB ]) with

d = 3.

{∅}

{3}{1}

{12} {23}

{123}

{2}

{13}

Powerset of {1, 2, 3}

Let VA = V (E [G(X ) | XA]).

A

123 V (G(X )) - V12 - V23 - V13 +V1 +V2 +V3

12 + V12 -V1 -V2

23 + V23 -V2 -V3

13 + V13 -V1 -V3

1 +V1

2 +V2

3 +V3

Sum V (G(X )) +0 +0 +0 +0 +0 +0

This is just a fancy way to write QoI(G (X )) = QoI(G (X )) + 0.
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Meaningfulness

Many coalitional decompositions built using Möbius inversion formula are not meaningful.

For instance:

v(A) =

V (G(X )) if A = D,

cA for any cA ∈ A otherwise.

leads to a Möbius variance decomposition.

Thus, we need to define desirability properties on input-centric coalitional decompositions.

Definition (Gradual coalitional decomposition (I. et al. 2023)).

Let X = (X1, . . . ,Xd)
⊤ be random inputs, and let QoI(G(X )) be an A-valued QoI on G .

For any A ∈ P (D), let fA(XA) be a σ(XA)-measurable representation of G(X ). If the coalitional
decomposition can be written as:

QoI(G(X )) =
∑

A∈P(D)

∑
B∈P(A)

(−1)|A|−|B|QoI(fA(XA))

it is said to be gradual.
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Recipe

To build an input-centric gradual coalitional QoI decomposition:

• Choose candidates fA(XA) to represent G(X ) as a function of XA.

(In the previous examples, fA(XA) = E [G(X ) | XA])

• Make sure that fD(X ) = G(X ).

• Compute the same A-valued QoI on each of the fA(XA), provided they exist.
(e.g., a (super)-quantile, a failure probability, a covariance matrix)

• Compute, ∀A ∈ P (D), the quantities:

ψ(A) =
∑

B∈P(A)

(−1)|A|−|B|QoI(fA(XA)).

• Then, by the Möbius inversion:

QoI(G(X )) =
∑

A∈P(D)

ψ(A).

But, how can these decompositions be interpreted ?
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• Then, by the Möbius inversion:

QoI(G(X )) =
∑

A∈P(D)

ψ(A).

But, how can these decompositions be interpreted ?

10/19



Recipe

To build an input-centric gradual coalitional QoI decomposition:

• Choose candidates fA(XA) to represent G(X ) as a function of XA.

(In the previous examples, fA(XA) = E [G(X ) | XA])

• Make sure that fD(X ) = G(X ).

• Compute the same A-valued QoI on each of the fA(XA), provided they exist.
(e.g., a (super)-quantile, a failure probability, a covariance matrix)

• Compute, ∀A ∈ P (D), the quantities:

ψ(A) =
∑

B∈P(A)

(−1)|A|−|B|QoI(fA(XA)).

• Then, by the Möbius inversion:
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Interpretation

The interpretation of each:

ψ(A) =
∑

B∈P(A)

(−1)|A|−|B|QoI(fA(XA))

is subject to the fA(XA), which are subject to the model and the distribution of the inputs.

For the variance decomposition:

• If the inputs are mutually independent, and we choose fA(XA) = E [G(X ) | XA], we saw

that both approaches are equivalent:

∀A ∈ P (D) , ψ(A) = V (GA(XA)) = V (G(X ))× SA (the Sobol’ indices)

and hence the ψ(A) can be interpreted as pure interaction effects.
• If the inputs are not mutually independent, V (E [G(X ) | XA]) and ψ(A) can vary

according to the dependence structure, and hence cannot quantify pure interaction.
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∀A ∈ P (D) , ψ(A) = V (GA(XA)) = V (G(X ))× SA (the Sobol’ indices)

and hence the ψ(A) can be interpreted as pure interaction effects.

• If the inputs are not mutually independent, V (E [G(X ) | XA]) and ψ(A) can vary
according to the dependence structure, and hence cannot quantify pure interaction.
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Illustration: Linear model with interaction and gaussian inputs

G(X ) = X1 + X2X3, X =

X1

X2

X3

 ∼ N


0

0

0

 ,

1 0 ρ

0 1 0

ρ 0 1


 (1)

Let, ∀A ⊆ {1, 2, 3}:
ψ(A) =

1

V (G(X ))

∑
B∈P(A)

(−1)|A|−|B|V (E [G(X ) | XA])

Independent case (ρ = 0)

(The ψ(A) are equal to the Sobol’ indices)

S1 = 0.5 S2 = 0, S3= 0,

S12= 0, S13= 0, S23 = 0.5,

S123= 0

Correlated case (ρ ̸= 0)

ψ(1) = 0.5 ψ(2) = 0, ψ(3)= ρ2/2,

ψ(12)= ρ2/2, ψ(13)= −ρ2/2, ψ(23) = 0.5,

ψ(123)= −ρ2/2

In both cases ∑
A∈P(D) ψ(A) = 1, but in the correlated case, we cannot precisely

characterize what ψ(A) quantifies.
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Shapley effects with dependent inputs

Hence, the precise interpretation of

ψ(A) =
1

V (G(X ))

∑
B∈P(A)

(−1)|A|−|B|V (E [G(X ) | XA])

is still an open question : it clearly is a mixture of interaction and dependence effects.

But which mixture ?

The Shapley effects for an input i ∈ D can be written as (Harsanyi 1963):

Shi =
∑

A∈P(D),i∈A

ψ(A)

|A| .

which is an egalitarian aggregation of a (not so clear) mixture of interaction and
dependence effects.

Choosing v(A) = V (E [G (X ) | XA]), leads to an uncharacterized
quantification.
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Conclusions

Coalitional decompositions of QoIs:

• We saw two approaches: Input-centric and Model-centric.
• Defining input-centric gradual QoI decomposition reduces to the choice of a

representant fA(XA).

• The input-centric approach bypasses the need for input independence and, in the

case of L2
, an orthogonal functional decomposition.

• The interpretation of these decompositions vary w.r.t. the dependence structure and
the choice of representant.

Cooperative games based GSA indices:

• Allocations are aggregations of input-centric coalitional QoI decompositions, driven

by the choice of value function v(A).

• The Shapley effects (for dependent inputs) are an egalitarian redistribution of the

gradual QoI decomposition with v(A) = V (E [G(X ) | XA]).

• At this time, we cannot characterize exactly what they quantify.
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Perspectives

But...

For (not necessarily mutually independent) inputs X = (X1, . . . ,Xd)
⊤
, is it possible de find

representants fA(XA) such that each term

ψ(A) =
∑

B∈P(A)

(−1)|A|−|B|V (fA(XA))

of the input-centric gradual variance decomposition
V (G(X )) =

∑
A∈P(D)

ψ(A)

quantifies pure interaction ?

Our intuition:

• Model-centric approach to find the representants fA(XA).

• Input-centric approach to define a gradual variance decomposition using these

representants.
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Perspective

In the case of models in L2
, the model-centric approach would amount to show that:

L2(PX ) =
⊕

A∈P(D)

VA,

hold whenever the inputs are not necessarily mutually independant, where the VA are not
necessarily pairwise orthogonal.

If so, the projections of G(X ) onto each VA could allow to define promising representants.

For fixed marginals and a fixed model, there would be one set of representants for a
particular dependence structure.

What would be the properties of gradual variance decompositions with this choice of
representants ?

We don’t know yet... But we’re working on it :)

16/19



Perspective

In the case of models in L2
, the model-centric approach would amount to show that:

L2(PX ) =
⊕

A∈P(D)

VA,

hold whenever the inputs are not necessarily mutually independant, where the VA are not
necessarily pairwise orthogonal.

If so, the projections of G(X ) onto each VA could allow to define promising representants.

For fixed marginals and a fixed model, there would be one set of representants for a
particular dependence structure.

What would be the properties of gradual variance decompositions with this choice of
representants ?

We don’t know yet... But we’re working on it :)

16/19



Perspective

In the case of models in L2
, the model-centric approach would amount to show that:

L2(PX ) =
⊕

A∈P(D)

VA,

hold whenever the inputs are not necessarily mutually independant, where the VA are not
necessarily pairwise orthogonal.

If so, the projections of G(X ) onto each VA could allow to define promising representants.

For fixed marginals and a fixed model, there would be one set of representants for a
particular dependence structure.

What would be the properties of gradual variance decompositions with this choice of
representants ?

We don’t know yet... But we’re working on it :)

16/19



Perspective

In the case of models in L2
, the model-centric approach would amount to show that:

L2(PX ) =
⊕

A∈P(D)

VA,

hold whenever the inputs are not necessarily mutually independant, where the VA are not
necessarily pairwise orthogonal.

If so, the projections of G(X ) onto each VA could allow to define promising representants.

For fixed marginals and a fixed model, there would be one set of representants for a
particular dependence structure.

What would be the properties of gradual variance decompositions with this choice of
representants ?

We don’t know yet... But we’re working on it :)

16/19



Coalitional decompositions of parameters of interest

For a more in-depth (and more general) study of the relationship between Möbius inversion
and coalitional decompositions of QoIs, check-out our pre-print (HAL/arXiv):

17/19



References i

Bilbao, J. M. 2000. Cooperative Games on Combinatorial Structures [in en]. Edited by W. Leinfellner and G. Eberlein. Vol. 26. Theory and

Decision Library. Boston, MA: Springer US. isbn: 978-1-4613-6976-9 978-1-4615-4393-0.

https://doi.org/10.1007/978-1-4615-4393-0. http://link.springer.com/10.1007/978-1-4615-4393-0.

Da Veiga, S., F. Gamboa, B. Iooss, and C. Prieur. 2021. Basics and Trends in Sensitivity Analysis: Theory and Practice in R [in en].

Philadelphia, PA: Society for Industrial / Applied Mathematics, January. isbn: 978-1-61197-668-7 978-1-61197-669-4.

https://doi.org/10.1137/1.9781611976694. https://epubs.siam.org/doi/book/10.1137/1.9781611976694.

Gamboa, F., A. Janon, T. Klein, and A. Lagnoux. 2013. “Sensitivity indices for multivariate outputs.” Comptes Rendus Mathematique 351 (7):

307–310. issn: 1631-073X. https://doi.org/10.1016/j.crma.2013.04.016.

Harsanyi, J. C. 1963. “A Simplified Bargaining Model for the n-Person Cooperative Game.” Publisher: [Economics Department of the

University of Pennsylvania, Wiley, Institute of Social and Economic Research, Osaka University], International Economic Review 4 (2):

194–220. issn: 0020-6598. https://doi.org/10.2307/2525487. https://www.jstor.org/stable/2525487.

Herin, M., M. I., V. Chabridon, and B. Iooss. 2022. Proportional marginal effects for global sensitivity analysis [in en], October.

https://hal.science/hal-03825935.

Hoeffding, W. 1948. “A Class of Statistics with Asymptotically Normal Distribution.” Publisher: Institute of Mathematical Statistics, The Annals
of Mathematical Statistics 19, no. 3 (September): 293–325. issn: 0003-4851, 2168-8990.

https://doi.org/10.1214/aoms/1177730196.

https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-19/issue-3/A-Class-of-Statistics-with-

Asymptotically-Normal-Distribution/10.1214/aoms/1177730196.full.

18/19

https://doi.org/10.1007/978-1-4615-4393-0
http://link.springer.com/10.1007/978-1-4615-4393-0
https://doi.org/10.1137/1.9781611976694
https://epubs.siam.org/doi/book/10.1137/1.9781611976694
https://doi.org/10.1016/j.crma.2013.04.016
https://doi.org/10.2307/2525487
https://www.jstor.org/stable/2525487
https://hal.science/hal-03825935
https://doi.org/10.1214/aoms/1177730196
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-19/issue-3/A-Class-of-Statistics-with-Asymptotically-Normal-Distribution/10.1214/aoms/1177730196.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-19/issue-3/A-Class-of-Statistics-with-Asymptotically-Normal-Distribution/10.1214/aoms/1177730196.full


References ii

I., M., N. Bousquet, F. Gamboa, B. Iooss, and J. Loubes. 2023. On the coalitional decomposition of parameters of interest [in en], January.

Accessed April 2, 2023. https://hal.science/hal-03927476.

Kung, J. P. S., G-C. Rota, and C. Hung Yan. 2012. Combinatorics: the Rota way. OCLC: 1226672593. New York: Cambridge University Press.

isbn: 978-0-511-80389-5.

Owen, Art B. 2014. “Sobol’ Indices and Shapley Value” [in en]. SIAM/ASA Journal on Uncertainty Quantification 2, no. 1 (January):

245–251. issn: 2166-2525. https://doi.org/10.1137/130936233. http://epubs.siam.org/doi/10.1137/130936233.

Rota, G-C. 1964. “On the foundations of combinatorial theory I. Theory of Möbius Functions.” Zeitschrift für Wahrscheinlichkeitstheorie und
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Thank you for your attention!

Any questions?
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Cooperative game theory

In a nutshell, cooperative game theory can

be summarized as “the art of cutting a cake”.

Given a set of players D = {1, . . . , d}, who produces a quantity v(D), how can one allocate

shares of v(D) among the d players ?

The “cake cutting process” is often described through axioms (i.e., desired properties), and

results in an allocation.

Formally, a cooperative game is denoted (D, v) where D is a set of players, and
v : P(D) → R is a value function, mapping every possible subset of players to a real value.



Interpreting the Shapley values: Harsanyi dividends

Another equivalent enlightening representation of the Shapley values can be done using

Harsanyi dividends (Harsanyi 1963).

Let (D, v) be a cooperative game, and for any A ⊆ D, let the Harsanyi dividend of the

coalition A be:

Dv (A) =
∑
B⊆A

(−1)|A|−|B|v(A).

The Harsanyi dividends can be interpreted as the

surplus (or shortfall) that a coalition generates:

Dv (1) = v(1), Dv (2) = v(2),

Dv (1, 2) = v(1, 2)− v(1)− v(2).



Interpreting the Shapley values: Harsanyi dividends

The Shapley values are then defined as:

Shi =
∑

A⊆D:i∈A

Dv (A)

|A| ,

or, in other words, each dividend of a coalition is equally redistributed between the players

that composes it.

Quick example: Eve and John are two developers, Eve

produces 10.000 lines of code, John produces 8.000 lines of

code.

However, John really likes to play babyfoot, but Eve is a

hard-worker.

When working together, they only produce 10.000 lines of code.

This means that the dividend of their coalition is −8.000.

Is it fair to attribute Eve −4.000 lines of code, even if she did all
the work ?



Example - Covariance Matrix decomposition

Suppose that G(X ) = (G1(X ), . . .Gk(X ))⊤ is valued in Rk
, and that G(X ) ∈ L2

(
PX ,Rk

)
(Gamboa et al. 2013).

The QoI is the covariance matrix of the outputs V (G(X )) ∈ Rk×k
.

Let Σ(A) = V (E [G(X ) | XA]) ∈ Rk×k
be defined element-wise as:

Σi,j(A) = Cov (E [Gi (X ) | XA] ,E [Gj(X ) | XA]) .

Let, ∀A ∈ P (D):

ψ(A) =
∑

B∈P(A)

(−1)|A|−|B|Σ(A) ∈ Rk×k .

Then, using the Möbius inversion on power-sets, one has the following coalitional

decomposition of the output covariance matrix:

V (G(X )) =
∑

A∈P(D)

ψ(A).



Posets, incidence algebra and Möbius inverse

A partially ordered set (poset) is defined as a pair (S,≤) where S is a non-empty set, and ≤ is a partial

order binary relation on elements of S. A poset (S,≤) is said to be locally finite if, for any x , z ∈ S, the
sets {y ∈ S : x ≤ y ≤ z} (also called segments of S) are finite.

Denote IA(S) the incidence algebra of a locally finite poset (S,≤) over a commutative ring with identity

A, i.e., the set of functions f : S × S → A such that f (x , y) = 0 if x ̸≤ y . (IA(S),+, ∗) forms an A-algebra
with the usual pointwise addition + and the usual convolution ∗, i.e., for any f , g ∈ IA(S), and any

x , z ∈ S such that the segment {y ∈ S : x ≤ y ≤ z} is non-empty,

(f ∗ g)(x , z) =
∑

x≤y≤z

f (x , y)g(y , z).

The zeta function ζ ∈ IA(S) is the convolutional identity of the incidence algebra, and is defined as,

∀x , y ∈ S:

ζ(x , y) =

{
1 if x = y ,

0 otherwise.



Posets, incidence algebra and Möbius inverse

The Möbius function, denoted µ ∈ IA(S), in the case of locally finite posets S, is defined as the inverse of
the zeta function for the convolution operator defined on the incidence algebra of S, and can be

computed recursively, for any x , y ∈ S with x ≤ y , as

µ(x , y) =


1 if x = y

−
∑

x≤z<y

µ(x , z) otherwise.

Theorem (Möbius inversion formula on locally finite posets). Let S be any non-empty set and (S,≤) form a
locally finite poset, where ≤ is a binary relation. Let φ and ψ be functions from S to A. Then, the following
equivalence hold:

φ(x) =
∑
y :y≤x

ψ(y), ∀x ∈ S ⇐⇒ ψ(x) =
∑
y :y≤x

φ(y)µ(y , x), ∀x ∈ S.

where µ is the Möbius function.



Posets, incidence algebra and Möbius inverse

Definition (Quantity of interest). An A-valued QoI on a model G with random inputs X ∼ PX , is an
application:

ϕ : P(E)×M(E) → A

P × H 7→ ϕP(H).

onto G and PX , i.e., ϕPX
(G).

Lemma (Möbius decomposition). Let G ∈ M a model with E -valued random inputs X ∼ PX ∈ P(E). Let
ϕPX

(G) be a QoI on G . Let φ : P(D) → A be a set function such that:

φD = ϕPX
(G).

and ∀A ∈ P (D) , φA is well-defined. Then, ϕPX
(G) admits the following coalitional decomposition:

ϕPX
(G) =

∑
A∈P(D)

ψA,

where, ∀A ⊆ D, ψA =
∑

B⊆A(−1)|A|−|B|φB .
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