Physics-informed Kriging with applications to inverse problems involving PDEs

lain Henderson
Advisors: Pascal Noble (IMT), Olivier Roustant (IMT)
INSA Toulouse/IMT

MASCOT-NUM, 04/04/2023

Regression under model contraints

Aim : forecast of some phenomena (physical, oceanography)

- Modelled by some unknown function u
- At our disposal : database $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$, perhaps limited.
- Model constraining $u: \frac{1}{c^{2}} \partial_{t t}^{2} u=\partial_{x x}^{2} u+f$
- Objective : approximate $u(t, x)$ for all (t, x) (regression)

Regression under model contraints

Aim : forecast of some phenomena (physical, oceanography)

- Modelled by some unknown function u
- At our disposal : database $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$, perhaps limited.
- Model constraining $u: \frac{1}{c^{2}} \partial_{t t}^{2} u=\partial_{x x}^{2} u+f$
- Objective : approximate $u(t, x)$ for all (t, x) (regression)

Idea : combine data and model (grey box model).

Outline of the talk

(1) Constrained Gaussian process regression
(2) Physics informed Gaussian processes

- Distributional formulation of PDEs
- Sobolev regularity of Gaussian random fields
(3) Gaussian process regression for the 3D wave equation
- GP priors for the 3D wave equation
- Solving some inverse problems
- Numerical applications

Outline of the talk

(1) Constrained Gaussian process regression
(2) Physics informed Gaussian processes

- Distributional formulation of PDEs
- Sobolev regularity of Gaussian random fields
(3) Gaussian process regression for the 3D wave equation
- GP priors for the 3D wave equation
- Solving some inverse problems
- Numerical applications

Gaussian process regression (GPR)

- Unknown function : $u: \mathcal{D} \rightarrow \mathbb{R}$, obs. $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$
- Model u as a realization of a Gaussian process $\left(U_{z}\right)_{z \in D} \sim G P(0, k)$.

Gaussian process regression (GPR)

- Unknown function : $u: \mathcal{D} \rightarrow \mathbb{R}$, obs. $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$
- Model u as a realization of a Gaussian process $\left(U_{z}\right)_{z \in D} \sim G P(0, k)$.
- Condition U on data : $V_{z}=\left[U_{z} \mid U_{z_{1}}=u\left(z_{1}\right), \ldots, U_{z_{n}}=u\left(z_{n}\right)\right]$, yielding

$$
V_{z} \sim G P(\tilde{m}, \tilde{k})
$$

\tilde{m} and \tilde{k} are given by the Kriging formulas.

- $\forall z \in D$, approximate $u(z)$ with $\tilde{m}(z): u(z) \simeq \tilde{m}(z)+$ interpolation.

Gaussian process regression (GPR)

- Unknown function : $u: \mathcal{D} \rightarrow \mathbb{R}$, obs. $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$
- Model u as a realization of a Gaussian process $\left(U_{z}\right)_{z \in D} \sim G P(0, k)$.
- Condition U on data : $V_{z}=\left[U_{z} \mid U_{z_{1}}=u\left(z_{1}\right), \ldots, U_{z_{n}}=u\left(z_{n}\right)\right]$, yielding

$$
V_{z} \sim G P(\tilde{m}, \tilde{k})
$$

\tilde{m} and \tilde{k} are given by the Kriging formulas.

- $\forall z \in D$, approximate $u(z)$ with $\tilde{m}(z): u(z) \simeq \tilde{m}(z)+$ interpolation.

Why use GPR?

- Mathematically tractable and interpretable.
- GPR as orthogonal projections in the RKHS \rightarrow more familiar in the PDE community.

Gaussian process regression (GPR)

- Unknown function : $u: \mathcal{D} \rightarrow \mathbb{R}$, obs. $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$
- Model u as a realization of a Gaussian process $\left(U_{z}\right)_{z \in D} \sim G P(0, k)$.
- Condition U on data : $V_{z}=\left[U_{z} \mid U_{z_{1}}=u\left(z_{1}\right), \ldots, U_{z_{n}}=u\left(z_{n}\right)\right]$, yielding

$$
V_{z} \sim G P(\tilde{m}, \tilde{k})
$$

\tilde{m} and \tilde{k} are given by the Kriging formulas.

- $\forall z \in D$, approximate $u(z)$ with $\tilde{m}(z): u(z) \simeq \tilde{m}(z)+$ interpolation.

Why use GPR?

- Mathematically tractable and interpretable.
- GPR as orthogonal projections in the RKHS \rightarrow more familiar in the PDE community.
Now : understand behaviour of GPR w.r.t. PDEs :
(i) linear,
(ii) Sobolev.

Linearly constrained GPR

Assume that $L u=0, L$ linear. The GPR procedure is adapted to this constraint if $L \tilde{m}=0$.

Linearly constrained GPR

Assume that $L u=0, L$ linear. The GPR procedure is adapted to this constraint if $L \tilde{m}=0$.

Denote $u_{o b s}=\left(u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right)$ the data, $K_{i j}:=k\left(z_{i}, z_{j}\right)$ et $k(Z, z)_{i}:=k\left(z_{i}, z\right)$.

Linearly constrained GPR

Assume that $L u=0, L$ linear. The GPR procedure is adapted to this constraint if $L \tilde{m}=0$.

Denote $u_{o b s}=\left(u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right)$ the data, $K_{i j}:=k\left(z_{i}, z_{j}\right)$ et $k(Z, z)_{i}:=k\left(z_{i}, z\right)$. Then the Kriging mean is given by

$$
\tilde{m}(z)=k(Z, z)^{T} K^{-1} u_{o b s} \in \operatorname{Span}\left(k\left(z_{1}, \cdot\right), \ldots, k\left(z_{n}, \cdot\right)\right) .
$$

Linearly constrained GPR

Assume that $L u=0, L$ linear. The GPR procedure is adapted to this constraint if $L \tilde{m}=0$.

Denote $u_{o b s}=\left(u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right)$ the data, $K_{i j}:=k\left(z_{i}, z_{j}\right)$ et $k(Z, z)_{i}:=k\left(z_{i}, z\right)$. Then the Kriging mean is given by

$$
\tilde{m}(z)=k(Z, z)^{T} K^{-1} u_{o b s} \in \operatorname{Span}\left(k\left(z_{1}, \cdot\right), \ldots, k\left(z_{n}, \cdot\right)\right) .
$$

- $L \tilde{m}=0$ is ensured if $L k(z, \cdot)=0$ for all z.
- More generally : incorporate prior knowledge in the GP prior.

The problem with PDE constraints

Examples of physical constraints : positivity, conservation laws... They generally take the form of partial differential equations (PDEs), e.g.

$$
\begin{equation*}
L u:=\sum_{|\alpha| \leq n} a_{\alpha}(x) \partial^{\alpha} u=0 . \tag{1}
\end{equation*}
$$

Above : $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d},|\alpha|=\alpha_{1}+\ldots+\alpha_{d}, \partial^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} \ldots \partial_{x_{d}}^{\alpha_{d}}$.

The problem with PDE constraints

Examples of physical constraints : positivity, conservation laws... They generally take the form of partial differential equations (PDEs), e.g.

$$
\begin{equation*}
L u:=\sum_{|\alpha| \leq n} a_{\alpha}(x) \partial^{\alpha} u=0 . \tag{1}
\end{equation*}
$$

Above : $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d},|\alpha|=\alpha_{1}+\ldots+\alpha_{d}, \partial^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} \ldots \partial_{x_{d}}^{\alpha_{d}}$.

Limited smoothness of solutions of PDEs

Physically meaningful solutions of (1) may not be n times differentiable.
Example : $\partial_{t} u+c \partial_{x} u=0, u(\cdot, t=0)=u_{0}$.
Solution is $u(x, t)=u_{0}(x-c t)$, smoothness looks irrelevant!
Worse if nonlinear : solutions may become discontinuous in finite time.

The problem with PDE constraints

Examples of physical constraints : positivity, conservation laws... They generally take the form of partial differential equations (PDEs), e.g.

$$
\begin{equation*}
L u:=\sum_{|\alpha| \leq n} a_{\alpha}(x) \partial^{\alpha} u=0 . \tag{1}
\end{equation*}
$$

Above : $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d},|\alpha|=\alpha_{1}+\ldots+\alpha_{d}, \partial^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} \ldots \partial_{x_{d}}^{\alpha_{d}}$.

Limited smoothness of solutions of PDEs

Physically meaningful solutions of (1) may not be n times differentiable.
Example : $\partial_{t} u+c \partial_{x} u=0, u(\cdot, t=0)=u_{0}$.
Solution is $u(x, t)=u_{0}(x-c t)$, smoothness looks irrelevant!
Worse if nonlinear : solutions may become discontinuous in finite time. The PDE has to be understood in some weakened form (not just a trick) \rightarrow weak formulations, Sobolev spaces

Outline of the talk

(1) Constrained Gaussian process regression
(2) Physics informed Gaussian processes

- Distributional formulation of PDEs
- Sobolev regularity of Gaussian random fields
(3) Gaussian process regression for the 3D wave equation
- GP priors for the 3D wave equation
- Solving some inverse problems
- Numerical applications

Relaxing the definition of derivatives : distributions

Let \mathcal{D} be an open set of \mathbb{R}.

Relaxing the definition of derivatives : distributions

Let \mathcal{D} be an open set of \mathbb{R}. Note D the single derivative operator.

$$
L u=\sum_{k=1}^{n} a_{k} D^{k} u
$$

Relaxing the definition of derivatives : distributions

Let \mathcal{D} be an open set of \mathbb{R}. Note D the single derivative operator.

$$
L u=\sum_{k=1}^{n} a_{k} D^{k} u
$$

Assume that u is a classical solution to $L u=0: u \in C^{n}(\mathcal{D})$ and

$$
\begin{equation*}
\forall x \in \mathcal{D},(L u)(x)=0 \tag{2}
\end{equation*}
$$

Relaxing the definition of derivatives : distributions

Let \mathcal{D} be an open set of \mathbb{R}. Note D the single derivative operator.

$$
L u=\sum_{k=1}^{n} a_{k} D^{k} u
$$

Assume that u is a classical solution to $L u=0: u \in C^{n}(\mathcal{D})$ and

$$
\begin{equation*}
\forall x \in \mathcal{D},(L u)(x)=0 \tag{2}
\end{equation*}
$$

Multiply (2) by $\varphi \in C_{c}^{\infty}(\mathcal{D})$ and integrate over \mathcal{D} :

$$
\begin{equation*}
\forall \varphi \in C_{c}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} L u(x) \varphi(x) d x=0 . \text { (smooth local averages) } \tag{3}
\end{equation*}
$$

Relaxing the definition of linear PDEs : distributions

Integration by parts on (3) :

$$
\int_{\mathcal{D}} D^{k} u(x) \varphi(x) d x=(-1)^{k} \int_{\mathcal{D}} u(x) D^{k} \varphi(x) d x .
$$

Relaxing the definition of linear PDEs : distributions

Integration by parts on (3) :

$$
\int_{\mathcal{D}} D^{k} u(x) \varphi(x) d x=(-1)^{k} \int_{\mathcal{D}} u(x) D^{k} \varphi(x) d x
$$

Define $L^{*} v=\sum_{k=1}^{n} a_{k}(-1)^{k} D^{k} v$ (formal adjoint).

Relaxing the definition of linear PDEs : distributions

Integration by parts on (3) :

$$
\int_{\mathcal{D}} D^{k} u(x) \varphi(x) d x=(-1)^{k} \int_{\mathcal{D}} u(x) D^{k} \varphi(x) d x
$$

Define $L^{*} v=\sum_{k=1}^{n} a_{k}(-1)^{k} D^{k} v$ (formal adjoint). Then,

$$
\forall \varphi \in C_{c}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} L u(x) \varphi(x) d x=\int_{\mathcal{D}} u(x) L^{*} \varphi(x) d x=0
$$

Relaxing the definition of linear PDEs : distributions

Integration by parts on (3) :

$$
\int_{\mathcal{D}} D^{k} u(x) \varphi(x) d x=(-1)^{k} \int_{\mathcal{D}} u(x) D^{k} \varphi(x) d x
$$

Define $L^{*} v=\sum_{k=1}^{n} a_{k}(-1)^{k} D^{k} v$ (formal adjoint). Then,

$$
\forall \varphi \in C_{c}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} L u(x) \varphi(x) d x=\int_{\mathcal{D}} u(x) L^{*} \varphi(x) d x=0
$$

A function u is a solution to the PDE $L u=0$ in the distributional sense if

$$
\begin{equation*}
\forall \varphi \in C_{c}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} u(x) L^{*} \varphi(x) d x=0 \tag{4}
\end{equation*}
$$

Relaxing the definition of linear PDEs : distributions

Integration by parts on (3) :

$$
\int_{\mathcal{D}} D^{k} u(x) \varphi(x) d x=(-1)^{k} \int_{\mathcal{D}} u(x) D^{k} \varphi(x) d x
$$

Define $L^{*} v=\sum_{k=1}^{n} a_{k}(-1)^{k} D^{k} v$ (formal adjoint). Then,

$$
\forall \varphi \in C_{c}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} L u(x) \varphi(x) d x=\int_{\mathcal{D}} u(x) L^{*} \varphi(x) d x=0
$$

A function u is a solution to the PDE $L u=0$ in the distributional sense if

$$
\begin{equation*}
\forall \varphi \in C_{c}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} u(x) L^{*} \varphi(x) d x=0 \tag{4}
\end{equation*}
$$

One only requires that $u \in L_{\text {loc }}^{1}(\mathcal{D})$ to make sense of (4), i.e.

$$
\int_{K}|u|<+\infty \quad \text { for all compact set } \quad K \subset \mathcal{D}
$$

Random fields under linear distributional PDE constraints

Proposition 1 (H. et al. [2023, to appear])

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be an open set and let $L:=\sum_{|\alpha| \leq n} a_{\alpha} \partial^{\alpha}$ with $a_{\alpha} \in \mathcal{C}^{|\alpha|}(\mathcal{D})$. Let $U=\left(U_{z}\right)_{z \in \mathcal{D}}$ be a mesurable centered second order random field with covariance function $k\left(z, z^{\prime}\right)$. Assume that $\sigma: z \longmapsto k(z, z)^{1 / 2} \in L_{\text {loc }}^{1}(\mathcal{D})$. 1) Then $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in L_{\text {loc }}^{1}(\mathcal{D})\right\}\right)=1$ and $L_{\text {loc }}^{1}(\mathcal{D})$ and $k(z, \cdot) \in L_{\text {loc }}^{1}(\mathcal{D})$ for all $z \in \mathcal{D}$.
2) The following statements are equivalent:

- $\mathbb{P}(\{\omega \in \Omega: L(U(\omega))=0$ in the sense of distributions $)=1$,
- $\forall z \in \mathcal{D}, L(k(z, \cdot))=0$ in the sense of distributions.

Random fields under linear distributional PDE constraints

Proposition 1 (H. et al. [2023, to appear])

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be an open set and let $L:=\sum_{|\alpha| \leq n} a_{\alpha} \partial^{\alpha}$ with $a_{\alpha} \in \mathcal{C}^{|\alpha|}(\mathcal{D})$. Let $U=\left(U_{z}\right)_{z \in \mathcal{D}}$ be a mesurable centered second order random field with covariance function $k\left(z, z^{\prime}\right)$. Assume that $\sigma: z \longmapsto k(z, z)^{1 / 2} \in L_{\text {loc }}^{1}(\mathcal{D})$.

1) Then $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in L_{\text {loc }}^{1}(\mathcal{D})\right\}\right)=1$ and $L_{\text {loc }}^{1}(\mathcal{D})$ and $k(z, \cdot) \in L_{\text {loc }}^{1}(\mathcal{D})$ for all $z \in \mathcal{D}$.
2) The following statements are equivalent:

- $\mathbb{P}(\{\omega \in \Omega: L(U(\omega))=0$ in the sense of distributions $)=1$,
- $\forall z \in \mathcal{D}, L(k(z, \cdot))=0$ in the sense of distributions.

This generalizes a result from Ginsbourger et al. [2016] to distributional PDE constraints. This property is inherited on conditioned GPs.

Examples of kernels verifying $L(k(z, \cdot))=0 \quad \forall z$

Given L, find k_{L} s.t. $L\left(k_{L}(z, \cdot)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$.

Examples of kernels verifying $L(k(z, \cdot))=0 \quad \forall z$

Given L, find k_{L} s.t. $L\left(k_{L}(z, \cdot)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$.

- Laplace : $\Delta u=0$ Mendes and da Costa Júnior [2012], Ginsbourger et al. [2016]
- Heat : $\partial_{t}-D \Delta u=0$ Albert and Rath [2020]
- Div/Curl : $\nabla \cdot u=0, \nabla \times u=0$ Scheuerer and Schlather [2012],Owhadi [2023b]
- Continuum mechanics : Jidling et al. [2018]
- Helmholtz : $-\Delta u=\lambda u$ Albert and Rath [2020]
- (Non)stationary Maxwell : Wahlstrom et al. [2013], Jidling et al. [2017],Lange-Hegermann [2018]
- 3D wave equation, transport : H. et al. [2023, to appear]
- See also "latent forces" : Álvarez et al. [2009], López-Lopera et al. [2021]

Examples of kernels verifying $L(k(z, \cdot))=0 \quad \forall z$

Given L, find k_{L} s.t. $L\left(k_{L}(z, \cdot)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$.

- Laplace : $\Delta u=0$ Mendes and da Costa Júnior [2012], Ginsbourger et al. [2016]
- Heat : $\partial_{t}-D \Delta u=0$ Albert and Rath [2020]
- Div/Curl : $\nabla \cdot u=0, \nabla \times u=0$ Scheuerer and Schlather [2012],Owhadi [2023b]
- Continuum mechanics : Jidling et al. [2018]
- Helmholtz : $-\Delta u=\lambda u$ Albert and Rath [2020]
- (Non)stationary Maxwell : Wahlstrom et al. [2013], Jidling et al. [2017],Lange-Hegermann [2018]
- 3D wave equation, transport : H. et al. [2023, to appear]
- See also "latent forces" : Álvarez et al. [2009], López-Lopera et al. [2021]
Always based on representations of solutions of $L u=0$ of the form

$$
u=G f \quad \text { (Green's function/impulse response) }
$$

Relaxing the definition of derivatives: Sobolev spaces

Some functions are "almost" differentiable : $h(x)=\max (0,1-|x|)$.

Figure 1 - Left : $h(x)$. Right : $h^{\prime}(x)$ (hopefully).
Unfortunately, $h^{\prime} \notin C^{0} \ldots$ but $h^{\prime} \in L^{2}$ (finite energy)!

Relaxing the definition of derivatives: Sobolev spaces

Some functions are "almost" differentiable : $h(x)=\max (0,1-|x|)$.

Figure 1 - Left : $h(x)$. Right : $h^{\prime}(x)$ (hopefully).
Unfortunately, $h^{\prime} \notin C^{0} \ldots$ but $h^{\prime} \in L^{2}$ (finite energy)!
A function $g \in L_{\text {loc }}^{1}(\mathbb{R})$ is the weak derivative of h if for all $\varphi \in C_{c}^{\infty}(\mathbb{R})$,

$$
\int_{\mathbb{R}} h(x) \varphi^{\prime}(x) d x=-\int_{\mathbb{R}} g(x) \varphi(x) d x
$$

Relaxing the definition of derivatives: Sobolev spaces

Some functions are "almost" differentiable : $h(x)=\max (0,1-|x|)$.

Figure 1 - Left : $h(x)$. Right : $h^{\prime}(x)$ (hopefully).
Unfortunately, $h^{\prime} \notin C^{0} \ldots$ but $h^{\prime} \in L^{2}$ (finite energy)!
A function $g \in L_{\text {loc }}^{1}(\mathbb{R})$ is the weak derivative of h if for all $\varphi \in C_{c}^{\infty}(\mathbb{R})$,

$$
\int_{\mathbb{R}} h(x) \varphi^{\prime}(x) d x=-\int_{\mathbb{R}} g(x) \varphi(x) d x
$$

We then define

$$
\begin{aligned}
H^{1}(\mathbb{R}) & :=\left\{u \in L^{2}(\mathbb{R}): u^{\prime} \text { exists in the weak sense and } u^{\prime} \in L^{2}(\mathbb{R})\right\} \\
H^{m}(\mathcal{D}) & :=\left\{u \in L^{2}(\mathcal{D}): \forall|\alpha| \leq m, \partial^{\alpha} u \text { exists ITWS and } \partial^{\alpha} u \in L^{2}(\mathcal{D})\right\}
\end{aligned}
$$

Sobolev regularity of Gaussian random fields

Proposition 2 (H. [2022])

Let $\left(U_{z}\right)_{z \in \mathcal{D}} \sim G P(0, k)$ be a measurable $G P$, we have equivalence between (i) $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in H^{m}(\mathcal{D})\right\}\right)=1$

Sobolev regularity of Gaussian random fields

Proposition 2 (H. [2022])

Let $\left(U_{z}\right)_{z \in \mathcal{D}} \sim G P(0, k)$ be a measurable $G P$, we have equivalence between (i) $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in H^{m}(\mathcal{D})\right\}\right)=1$
(ii) For all $|\alpha| \leq m, \partial^{\alpha, \alpha} k \in L^{2}(\mathcal{D} \times \mathcal{D})$ and the integral operator \mathcal{E}_{k}^{α}

$$
\mathcal{E}_{k}^{\alpha}: L^{2}(\mathcal{D}) \rightarrow L^{2}(\mathcal{D}), \quad \mathcal{E}_{k}^{\alpha} f(x)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, y) f(y) d y
$$

is trace class, with, $\operatorname{Tr}\left(\mathcal{E}_{k}^{\alpha}\right)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, x) d x<+\infty$.

Sobolev regularity of Gaussian random fields

Proposition 2 (H. [2022])

Let $\left(U_{z}\right)_{z \in \mathcal{D}} \sim G P(0, k)$ be a measurable $G P$, we have equivalence between (i) $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in H^{m}(\mathcal{D})\right\}\right)=1$
(ii) For all $|\alpha| \leq m, \partial^{\alpha, \alpha} k \in L^{2}(\mathcal{D} \times \mathcal{D})$ and the integral operator \mathcal{E}_{k}^{α}

$$
\mathcal{E}_{k}^{\alpha}: L^{2}(\mathcal{D}) \rightarrow L^{2}(\mathcal{D}), \quad \mathcal{E}_{k}^{\alpha} f(x)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, y) f(y) d y
$$

is trace class, with, $\operatorname{Tr}\left(\mathcal{E}_{k}^{\alpha}\right)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, x) d x<+\infty$.
(iii) There exists $\left(\phi_{n}\right) \subset L^{2}(\mathcal{D})$ such that $k(x, y)=\sum_{n} \phi_{n}(x) \phi_{n}(y)$ in $L^{2}(\mathcal{D} \times \mathcal{D})$. Moreover, if $|\alpha| \leq m$, then $\phi_{n} \in H^{m}(\mathcal{D})$ and

$$
\operatorname{Tr}\left(\mathcal{E}_{k}^{\alpha}\right)=\sum_{n=0}^{+\infty}\left\|\partial^{\alpha} \phi_{n}\right\|_{2}^{2}<+\infty
$$

Sobolev regularity of Gaussian random fields

Proposition 2 (H. [2022])

Let $\left(U_{z}\right)_{z \in \mathcal{D}} \sim G P(0, k)$ be a measurable $G P$, we have equivalence between (i) $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in H^{m}(\mathcal{D})\right\}\right)=1$
(ii) For all $|\alpha| \leq m, \partial^{\alpha, \alpha} k \in L^{2}(\mathcal{D} \times \mathcal{D})$ and the integral operator \mathcal{E}_{k}^{α}

$$
\mathcal{E}_{k}^{\alpha}: L^{2}(\mathcal{D}) \rightarrow L^{2}(\mathcal{D}), \quad \mathcal{E}_{k}^{\alpha} f(x)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, y) f(y) d y
$$

is trace class, with, $\operatorname{Tr}\left(\mathcal{E}_{k}^{\alpha}\right)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, x) d x<+\infty$.
(iii) There exists $\left(\phi_{n}\right) \subset L^{2}(\mathcal{D})$ such that $k(x, y)=\sum_{n} \phi_{n}(x) \phi_{n}(y)$ in $L^{2}(\mathcal{D} \times \mathcal{D})$. Moreover, if $|\alpha| \leq m$, then $\phi_{n} \in H^{m}(\mathcal{D})$ and

$$
\operatorname{Tr}\left(\mathcal{E}_{k}^{\alpha}\right)=\sum_{n=0}^{+\infty}\left\|\partial^{\alpha} \phi_{n}\right\|_{2}^{2}<+\infty
$$

(iv) $\operatorname{RKHS}(k) \subset H^{m}(\mathcal{D})$ and the imbedding $\mathcal{I}: \operatorname{RKHS}(k) \rightarrow H^{m}(\mathcal{D})$ is Hilbert-Schmidt with $\|\mathcal{I}\|_{H S}^{2}=\sum_{|\alpha| \leq m} \operatorname{Tr}\left(\mathcal{E}_{k}^{\alpha}\right)$.

Sobolev regularity of Gaussian random fields : case $W^{m, p}, 1<p<+\infty, m \in \mathbb{N}$

Proposition 3 (H. [2022])

Let $\left(U_{z}\right)_{z \in \mathcal{D}} \sim G P(0, k)$ be a measurable $G P$, we have equivalence between (i) $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in W^{m, p}(\mathcal{D})\right\}\right)=1$
(ii) For all $|\alpha| \leq m, \partial^{\alpha, \alpha} k \in L^{p}(\mathcal{D} \times \mathcal{D})$ and the integral operator \mathcal{E}_{k}^{α}

$$
\mathcal{E}_{k}^{\alpha}: L^{q}(\mathcal{D}) \rightarrow L^{p}(\mathcal{D}), \quad \mathcal{E}_{k}^{\alpha} f(x)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, y) f(y) d y
$$

is symmetric, nonnegative and nuclear : there exists $\left(\phi_{n}^{\alpha}\right) \subset L^{p}(\mathcal{D})$ such that $\partial^{\alpha, \alpha} k(x, y)=\sum_{n} \phi_{n}^{\alpha}(x) \phi_{n}^{\alpha}(y)$ dans $L^{p}(\mathcal{D} \times \mathcal{D})$ verifying

$$
\sum_{n=0}^{+\infty}\left\|\phi_{n}^{\alpha}\right\|_{p}^{2}<+\infty \quad(+ \text { refinements if } 1 \leq p \leq 2)
$$

(iii) For all $|\alpha| \leq m, \partial^{\alpha, \alpha} k \in L^{p}(\mathcal{D} \times \mathcal{D})$ and $\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, x)^{p / 2} d x<+\infty$.

Outline of the talk

(1) Constrained Gaussian process regression
(2) Physics informed Gaussian processes

- Distributional formulation of PDEs
- Sobolev regularity of Gaussian random fields
(3) Gaussian process regression for the 3D wave equation
- GP priors for the 3D wave equation
- Solving some inverse problems
- Numerical applications

GP priors for the 3D wave equation (H. et al. [2023])

Consider the 3D wave equation $\left(\Delta:=\partial_{x x}^{2}+\partial_{y y}^{2}+\partial_{z z}^{2}\right)$

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{5}\\ u(x, 0) & =u_{0}(x), \quad \partial_{t} u(x, 0)=v_{0}(x) .\end{cases}
$$

Representation formula for u (Krichhoff) : $F_{t}=\sigma_{c t} / 4 \pi c^{2} t$ and $\dot{F}_{t}=\partial_{t} F_{t}$

$$
\begin{equation*}
u(x, t)=\left(F_{t} * v_{0}\right)(x)+\left(\dot{F_{t}} * u_{0}\right)(x) . \tag{6}
\end{equation*}
$$

GP priors for the 3D wave equation (H. et al. [2023])

Consider the 3D wave equation $\left(\Delta:=\partial_{x x}^{2}+\partial_{y y}^{2}+\partial_{z z}^{2}\right)$

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{5}\\ u(x, 0) & =u_{0}(x), \quad \partial_{t} u(x, 0)=v_{0}(x) .\end{cases}
$$

Representation formula for u (Krichhoff) : $F_{t}=\sigma_{c t} / 4 \pi c^{2} t$ and $\dot{F}_{t}=\partial_{t} F_{t}$

$$
\begin{equation*}
u(x, t)=\left(F_{t} * v_{0}\right)(x)+\left(\dot{F}_{t} * u_{0}\right)(x) \tag{6}
\end{equation*}
$$

Assume that u_{0} and v_{0} are unknown $\rightarrow u_{0} \sim G P\left(0, k_{u}\right)$ and $v_{0} \sim G P\left(0, k_{v}\right)$, assumed independant. The u given by (6) is a centered GP with covariance function

$$
\begin{equation*}
k\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)=\left[\left(F_{t} \otimes F_{t^{\prime}}\right) * k_{v}\right]\left(x, x^{\prime}\right)+\left[\left(\dot{F}_{t} \otimes \dot{F}_{t^{\prime}}\right) * k_{u}\right]\left(x, x^{\prime}\right) \tag{7}
\end{equation*}
$$

The kernel k verifies $\square k((x, t), \cdot)=0$ for all $(x, t) \in \mathbb{R}^{3} \times \mathbb{R}_{+}$.

Estimation of physical parameters and initial conditions

- Reconstruction of initial conditions : the Kriging mean verifies $\square \tilde{m}=0$. Hence,

$$
\tilde{m}(\cdot, t=0) \simeq u_{0}, \quad \partial_{t} \tilde{m}(\cdot, t=0) \simeq v_{0}
$$

Estimation of physical parameters and initial conditions

- Reconstruction of initial conditions : the Kriging mean verifies $\square \tilde{m}=0$. Hence,

$$
\tilde{m}(\cdot, t=0) \simeq u_{0}, \quad \partial_{t} \tilde{m}(\cdot, t=0) \simeq v_{0}
$$

- The kernel k is parametrized by c, θ_{u} and $\theta_{v} ; \theta_{u}$ and θ_{v} may contain physical informations u_{0} and v_{0}.
Example : initial condition u_{0} with compact support yield the prior over u_{0}

$$
\begin{equation*}
k_{u}\left(x, x^{\prime}\right)=k_{u}^{0}\left(x, x^{\prime}\right) \mathbb{1}_{B_{R}\left(x_{0}, R\right)}(x) \mathbb{1}_{B\left(x_{0}, R\right)}\left(x^{\prime}\right) \tag{8}
\end{equation*}
$$

Hence, $\left(x_{0}, R\right) \in \theta_{u}$. Likewise for v_{0} (We can also encode symetries). \rightarrow these can be estimated via negative log marginal likelihood minimization.

Numerical application

Restrictive framework

Expensive convolutions (4D) \rightarrow we assume radial symmetry over the initial conditions (explicit convolutions)

- Numerical resolution (finite differences in $[0,1]^{3}$) of the wave equation with $v_{0}=0$ and

$$
u_{0}(x)=A \mathbb{1}_{\left[R_{1}, R_{2}\right]}\left(\left|x-x_{0}^{*}\right|\right)\left(1+\cos \left(\frac{2 \pi\left(\left|x-x_{0}^{*}\right|-\frac{R_{1}+R_{2}}{2}\right)}{R_{2}-R_{1}}\right)\right)
$$

- Database generation: scattered sensors in $[0,1]^{3}$ (LHS).

$$
B=\left\{u\left(x_{i}, t_{j}\right)+\epsilon_{i j}, 1 \leq i \leq N_{C}, 1 \leq j \leq N_{T}\right\}, N_{C}=30, N_{T}=75
$$

Numerical application

Restrictive framework

Expensive convolutions (4D) \rightarrow we assume radial symmetry over the initial conditions (explicit convolutions)

- Numerical resolution (finite differences in $[0,1]^{3}$) of the wave equation with $v_{0}=0$ and

$$
u_{0}(x)=A \mathbb{1}_{\left[R_{1}, R_{2}\right]}\left(\left|x-x_{0}^{*}\right|\right)\left(1+\cos \left(\frac{2 \pi\left(\left|x-x_{0}^{*}\right|-\frac{R_{1}+R_{2}}{2}\right)}{R_{2}-R_{1}}\right)\right)
$$

- Database generation: scattered sensors in $[0,1]^{3}$ (LHS).

$$
B=\left\{u\left(x_{i}, t_{j}\right)+\epsilon_{i j}, 1 \leq i \leq N_{C}, 1 \leq j \leq N_{T}\right\}, N_{C}=30, N_{T}=75
$$

- Kriging with

$$
k_{u}\left(x, x^{\prime}\right)=k_{5 / 2}\left(x-x^{\prime}\right) \times \mathbb{1}_{B_{R}\left(x_{0}, R\right)}(x) \mathbb{1}_{B\left(x_{0}, R\right)}\left(x^{\prime}\right)
$$

Data visualization

Figure 2 - Examples of captured signals. Red : noiseless. Blue : noisy.

Physical parameter estimation

$N_{\text {sensors }}$	3	5	10	15	20	25	30	Target
$\left\|\hat{x}_{0}-x_{0}^{*}\right\|$	0.204	0.003	0.004	0.008	0.003	0.004	0.015	0
\hat{R}	0.386	0.432	0.462	0.431	0.414	0.471	0.452	0.25
$\left\|\hat{c}-c^{*}\right\|$	0.084	0.004	0.005	0.005	0.006	0.001	0.004	0
$\hat{\sigma}_{\text {noise }}^{2}$	0.917	0.879	0.93	0.99	0.361	0.988	0.377	0.2025
$\hat{\ell}$	0.02	0.02	0.025	0.02	0.035	0.024	0.032	~ 0.05
$\hat{\sigma}^{2}$	2.367	3.513	4.903	3.168	4.446	4.619	4.79	Unknown
$e_{1, \text { rel }}^{u}$	1.275	0.157	0.128	0.168	0.11	0.103	0.248	0
$e_{2, \text { rel }}^{u}$	1.056	0.095	0.082	0.124	0.088	0.064	0.213	0
$e_{\infty, \text { rel }}^{u}$	1.037	0.132	0.128	0.198	0.136	0.101	0.321	0

Table 1 - Hyperparameter estimation and relative errors

Initial condition reconstruction

Figure 3 - True u_{0} (left column) vs GPR u_{0} (right column). 15 sensors were used. The images correspond to slices at $z=0.5$.

Point source localization

Cas where $u_{0} \equiv 0$ and the source v_{0} is almost a Dirac mass at x_{0}^{*} : we use the kernels

$$
\begin{align*}
& k_{v}^{R}\left(x, x^{\prime}\right)=k_{v}\left(x, x^{\prime}\right) \frac{\mathbb{1}_{B\left(x_{0}, R\right)}(x)}{4 \pi R^{3} / 3} \frac{\mathbb{1}_{B\left(x_{0}, R\right)}}{4 \pi R^{3} / 3} \tag{9}\\
& k\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)=\left[\left(F_{t} \otimes F_{t^{\prime}}\right) * k_{v}^{R}\right]\left(x, x^{\prime}\right) \tag{10}
\end{align*}
$$

with $R \ll 1$. Hyperparameters of $k:\left(\theta_{v}, x_{0}, R, c\right)$ We fix θ_{v}, R et c at the "right values" : $\mathcal{L}(\theta)=\mathcal{L}\left(x_{0}\right)$.

Question: behaviour $x_{0} \mapsto \mathcal{L}\left(x_{0}\right)$?

Minimize negative marginal likelihood \equiv GPS localization

Conclusion and perspectives

Some overall conclusions :

- GPR : at the intersection of machine learning, statistical and Bayesian approaches and functional analysis.
- Very explicit links can be established in between the different approaches and mathematical tools.

Conclusion and perspectives

Some overall conclusions :

- GPR : at the intersection of machine learning, statistical and Bayesian approaches and functional analysis.
- Very explicit links can be established in between the different approaches and mathematical tools.
Some research perspectives :
- Insert the Sobolev regularity results in the analysis of GPR for PDEs.
- Current research : draw links between numerical methods for PDEs (finite elements, finite differences) and some GPR regimes.

Thank you for your attention!

Contact : henderso@insa-toulouse.fr

References I

C. G. Albert and K. Rath. Gaussian process regression for data fulfilling linear differential equations with localized sources. Entropy, 22(2), 2020. ISSN 1099-4300. URL https://www.mdpi.com/1099-4300/22/2/152.
Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M. Stuart. Solving and learning nonlinear PDEs with Gaussian processes. Journal of Computational Physics, 447 :110668, 2021. ISSN 0021-9991. doi : https://doi.org/10.1016/j.jcp.2021.110668. URL https://www. sciencedirect.com/science/article/pii/S0021999121005635.
D. Ginsbourger, O. Roustant, and N. Durrande. On degeneracy and invariances of random fields paths with applications in Gaussian process modelling. Journal of Statistical Planning and Inference, page 170 :117128, 2016.
lain H. Sobolev regularity of Gaussian random fields. working paper or preprint, October 2022. URL https://hal.science/hal-03769576.

References II

Iain H., Pascal Noble, and Olivier Roustant. Wave equation-tailored
Gaussian process regression with applications to related inverse problems. working paper or preprint, January 2023. URL https://hal.science/hal-03941939.
Iain H., Pascal Noble, and Olivier Roustant. Characterization of the second order random fields subject to linear distributional PDE constraints.
Bernoulli, 2023, to appear. URL
https://hal.science/hal-03770715.
C. Jidling, N. Wahlström, A. Wills, and T. B. Schön. Linearly constrained Gaussian processes. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/ 71ad16ad2c4d81f348082ff6c4b20768-Paper.pdf.

References III

C. Jidling, J. Hendriks, N. Wahlstrom, A. Gregg, T. Schon, C. Wensrich, and A. Wills. Probabilistic modelling and reconstruction of strain. Nuclear Instruments \& Methods in Physics Research Section B-beam Interactions With Materials and Atoms, 436 :141-155, 2018.
M. Lange-Hegermann. Algorithmic linearly constrained Gaussian processes. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/ 68b1fbe7f16e4ae3024973f12f3cb313-Paper.pdf.
A. F. López-Lopera, N. Durrande, and M. Álvarez. Physically-inspired Gaussian process models for post-transcriptional regulation in drosophila. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18 :656-666, 2021.

References IV

Fábio Macêdo Mendes and Edson Alves da Costa Júnior. Bayesian inference in the numerical solution of Laplace's equation. AIP Conference Proceedings, 1443(1) :72-79, 2012. doi : 10.1063/1.3703622. URL https://aip.scitation.org/doi/abs/10.1063/1.3703622.
Houman Owhadi. Do ideas have shape? idea registration as the continuous limit of artificial neural networks. Physica D : Nonlinear Phenomena, 444 :133592, 2023a. ISSN 0167-2789. doi : https://doi.org/10.1016/j.physd.2022.133592. URL https://www. sciencedirect.com/science/article/pii/S0167278922002962.
Houman Owhadi. Gaussian process hydrodynamics, 2023b.
C. E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. the MIT Press, 2006. ISBN 026218253X. URL www. \{G\}aussianProcess.org/gpml.
M. Scheuerer and M. Schlather. Covariance models for divergence-free and curl-free random vector fields. Stochastic Models, 28 :433-451, 2012.

References V

N. Wahlstrom, M. Kok, T. B. Schön, and F. Gustafsson. Modeling magnetic fields using Gaussian processes. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3522-3526, 2013.
Holger Wendland. Scattered data approximation, volume 17. Cambridge university press, 2004.
M. Álvarez, D. Luengo, and N. D. Lawrence. Latent force models. In D. van Dyk and M. Welling, editors, Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pages 9-16, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16-18 Apr 2009. PMLR. URL https://proceedings.mlr.press/v5/alvarez09a.html.

GPR and neural networks

- Some Gaussian processes as limits of one layer, infinite neurons NN (Rasmussen and Williams [2006], Section 4.2.3).
- NN as a kernel method with a kernel learnt from data (Owhadi [2023a] ; Mallat, collège de France).
- GPR : "only" current alternative to (physics informed) neural networks (PINNs), see Chen et al. [2021] for a discussion.

Radial symmetry formulas

$\left[\left(F_{t} \otimes F_{t^{\prime}}\right) * k_{v}\right]\left(x, x^{\prime}\right)$

$$
=\frac{\operatorname{sgn}\left(t t^{\prime}\right)}{16 c^{2} r r^{\prime}} \sum_{\varepsilon, \varepsilon^{\prime} \in\{-1,1\}} \varepsilon \varepsilon^{\prime} K_{\mathrm{v}}\left((r+\varepsilon c t)^{2},\left(r^{\prime}+\varepsilon^{\prime} c\left|t^{\prime}\right|\right)^{2}\right)
$$

$\left[\left(\dot{F}_{t} \otimes \dot{F}_{t^{\prime}}\right) * k_{u}\right]\left(x, x^{\prime}\right)$

$$
=\frac{1}{4 r r^{\prime}} \sum_{\varepsilon, \varepsilon^{\prime} \in\{-1,1\}}(r+\varepsilon c t)\left(r^{\prime}+\varepsilon^{\prime} c\left|t^{\prime}\right|\right) k_{u}\left((r+\varepsilon c t)^{2},\left(r^{\prime}+\varepsilon^{\prime} c\left|t^{\prime}\right|\right)^{2}\right)
$$

Details on F_{t} and \dot{F}_{t}

$\longrightarrow F_{t}=\sigma_{c t} / 4 \pi c^{2} t$ means that

Details on F_{t} and \dot{F}_{t}

$\longrightarrow F_{t}=\sigma_{c t} / 4 \pi c^{2} t$ means that

$$
\int_{\mathbb{R}^{3}} f(x) F_{t}(d x)=\frac{t}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} f(c t \gamma) \sin \theta d \theta d \varphi=\frac{t}{4 \pi} \int_{S(0,1)} f(c t \gamma) d \Omega
$$

where γ is the unit length vector $\gamma=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)^{T}$.

Details on F_{t} and \dot{F}_{t}

$\longrightarrow F_{t}=\sigma_{c t} / 4 \pi c^{2} t$ means that

$$
\int_{\mathbb{R}^{3}} f(x) F_{t}(d x)=\frac{t}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} f(c t \gamma) \sin \theta d \theta d \varphi=\frac{t}{4 \pi} \int_{S(0,1)} f(c t \gamma) d \Omega
$$

where γ is the unit length vector $\gamma=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)^{T}$.
\longrightarrow Convolution between functions and measures:

$$
(f * g)(x)=\int_{\mathbb{R}^{3}} g(x-y) f(y) d y \quad(\mu * g)(x)=\int_{\mathbb{R}^{3}} g(x-y) \mu(d y)
$$

Details on F_{t} and \dot{F}_{t}

$\longrightarrow F_{t}=\sigma_{c t} / 4 \pi c^{2} t$ means that

$$
\int_{\mathbb{R}^{3}} f(x) F_{t}(d x)=\frac{t}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} f(c t \gamma) \sin \theta d \theta d \varphi=\frac{t}{4 \pi} \int_{S(0,1)} f(c t \gamma) d \Omega
$$

where γ is the unit length vector $\gamma=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)^{T}$.
\longrightarrow Convolution between functions and measures:

$$
(f * g)(x)=\int_{\mathbb{R}^{3}} g(x-y) f(y) d y \quad(\mu * g)(x)=\int_{\mathbb{R}^{3}} g(x-y) \mu(d y)
$$

$\longrightarrow \dot{F}_{t}=\partial_{t} F_{t}$ means that

$$
\begin{aligned}
\left\langle\dot{F}_{t}, f\right\rangle & =\partial_{t} \int f(x) d F_{t}(x) \\
& =\frac{1}{4 \pi} \int_{S(0,1)} f(c t \gamma) d \Omega+\frac{c}{4 \pi} \int_{S(0,1)} \nabla f(c t \gamma) \cdot \gamma d \Omega
\end{aligned}
$$

Extension to non linear PDEs

- Non linear constraints on $k(z, \cdot)$: not realistic (+GP interpretation not valid).
- Alternative : in Chen et al. [2021], the nonlinear PDE constraint in applied pointwise on \tilde{m} : modification of the RKHS optimization problem as

$$
\inf _{v \in \mathcal{H}_{k}}\|v\|_{\mathcal{H}_{k}} \quad \text { s.c. } \quad \mathcal{N}\left(v\left(z_{i}\right), \nabla v\left(z_{i}\right), \ldots\right)=\ell_{i} \quad \forall i \in\{1, \ldots, n\}
$$

Generalizes an approach desribed in Wendland [2004].

- Coupling of this approach with strict linear constraints: Owhadi [2023b] (div/curl/périodicity).

