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Once upon a time

Erdos number = 2 ! ! !
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Deconvolution

The observation Y is given by

Y = X + ε ,

X is the signal and ε is the noise, X and ε are independent random
variables.

Goal : on the basis of observations Y1, . . . ,Yn, learn the distribution
of X.

Characteristic functions verify

E
(
e i〈t,Y〉

)
= E

(
e i〈t,X〉

)
E
(
e i〈t,ε〉

)
.

→ estimators based on knowledge of the characteristic function of
the noise.
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Topic of my talk

Deconvolution with totally unknown noise is possible for
multidimensional signals (under very weak assumptions) !

Application to

density estimation

support estimation

low-dimensional distribution estimation
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When the characteristic function of the noise is known
or with independent data of the noise

Estimators based on knowledge of the characteristic function of the
noise (Fourier/Kernel method ; bandwith selection ; non vanishing
characteristic function of the noise)

̂E
(
e i〈t,X〉

)
=

̂E
(
e i〈t,Y〉

)
E
(
e i〈t,ε〉

)
→ Hardness depends (mostly) on the way the characteristic function
of the noise decreases at infinity.
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Review of known results : density estimation
When the characteristic function of the noise is known

|E
(
e i〈t,ε〉

)
| ≥ A(‖t‖2 + 1)−γ/2 exp(−B‖t‖α)

If X has density f , let Rn(F) = inf
f̂

supf ∈F ‖f̂ − f ‖2
2 and let F be a

Sobolev class with regularity β. Observations are in Rd .

• Exponentially smooth errors : B > 0.
Then Rn(F) is of order (log n)−2β/α.

• Ordinary smooth errors : B = 0.
Then Rn(F) is of order n−2β/(2β+2γ+d).

Some (in the huge) literature : Carroll and Hall (1988), Fan (1991) ;
Tang (1994) ; Matias (2002) ; Meister (2009) ; Comte and Lacour
(2011).

E.Gassiat (UPS and CNRS) Fabrice Le Croisic 9 / 44



Review of known results : distribution estimation
When the characteristic function of the noise is known

Wasserstein metrics : estimation of the distribution without
assuming a density. If X has law µ, let

Rn(G) = inf
µ̂

sup
µ∈G

Wp(µ̂, µ)p

• Exponentially smooth errors : general lower bound in any
dimension (Dedecker and Michel JMA 2013). Here G requires
bounded 2p + a moments (for some a > 1). When the noise is
Gaussian (that is α = 2), then Rn(G) is of order (log n)−p/2.

• Ordinary smooth errors : in dimension 1 (Dedecker, Fisher,
Michel EJS 2015) and moment-like conditions.

Then Rn(G) is less than


n−p/(2p+2γ−1) if γ > 1/2√

(log n)/n if γ = 1/2
1/
√
n if γ < 1/2
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Review of known results : support estimation
When the characteristic function of the noise is known

Gaussian noise and (truncated) Hausdorff loss.

Genovese et al (AOS 2012). Assumption on the regularity of the
support (lower bounded reach). Estimation using the level set of a
smoothed density, requires the knowledge of the intrinsic dimension.

Maximum risk upper bounded by C
(

1
log n

) 1
2
−δ

.

Lower bound of the minimax risk : c
log n .

Brunel et al. (Bernoulli 2021). The support is a full dimensional
convex body. Estimation using endpoints estimation.

Maximum risk upper bounded by C
(

log log n√
log n

)
.

Lower bound of the minimax risk with reach more than τ ∈ (0, 1) :

c
(

1
log n

) 2
τ

.
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Robustness to the assumptions on the noise

• Misspecification : Meister (2004) proves that the mean integrated
squared error of such estimators can grow to infinity when the noise
distribution is misspecified.

• Knowledge of the characteristic function of the noise : reduction
to knowledge on a compact interval (Meister 2007). Dimension 1.
F : class of compactly supported densities with Sobolev regularity β.
Characteristic function of the noise known on [−ν, ν] and lower
bounded by µ.

Then Rn(F) is of order
(

log n
log log n

)−2β
.

→ Is it possible to get rid of the knowledge of the noise ?
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Joint works with

L. Lehéricy S. Le Corff J. Capitao-Miniconi
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First basic question : identifiability

Is the distribution of X uniquely determined by the distribution of
Y ? That is :

Can X + ε have the same distribution of X′ + ε′ with X′ having a
different distribution than X ?

What assumptions to get identifiability (up to translation) ?

Good news : no assumption on the noise and weak structure
assumptions on the signal allow identifiability

Multidimensional observations : Y, X, ε are in RD , D ≥ 2

No distributional assumption on the noise, except that it has
independent components

The distribution of the signal has light tails

Some dependency assumption on the components of the signal
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Identifiability theorem

• With d1 ≥ 1, d2 ≥ 1 (d1 + d2 = D) :

Y =

(
Y (1)

Y (2)

)
=

(
X (1)

X (2)

)
+

(
ε(1)

ε(2)

)
= X + ε .

• ε(1) is independent of ε(2).

Notations : PG ,Q is the distribution of Y when X has distribution G

and for i ∈ {1, 2}, ε(i) has distribution Q(i), with Q = Q(1) ⊗ Q(2).

∀(z1, z2) ∈ Cd1×Cd2 , ΦG (z1, z2) =

∫
exp

(
iz>1 x1 + iz>2 x2

)
G (dx1,dx2).

• Assumption H(ρ) : There exist A > 0,B > 0 such that for all
λ ∈ RD , ΦG (iλ) ≤ A exp (B‖λ‖ρ).

When H(ρ) holds, ΦG is a multivariate analytic function
.
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Identifiability theorem

• Assumption HD :
For any z1 ∈ Cd1 , z 7→ ΦG (z1, z) is not identically zero and
for any z2 ∈ Cd2 , z 7→ ΦG (z , z2) is not identically zero.

When X (1) and X (2) are not deterministic, if H(ρ), ρ < 2, and HD
hold, X (1) and X (2) can not be independent random variables

Let U(1) and U(2) be two independent random variables in Rd1 and

Rd2 respectively that satisfy H(ρ) for some ρ ≥ 1, then U =

(
U(1)

U(2)

)
satisfies HD if and only if U(1) and U(2) are Gaussian or Dirac
random variables.
From ΦU(z1, z2) = ΦU(1)(z1)ΦU(2)(z2) and
Hadamard+Marckinciewitz.

E.Gassiat (UPS and CNRS) Fabrice Le Croisic 17 / 44



Identifiability theorem

• Assumption HD :
For any z1 ∈ Cd1 , z 7→ ΦG (z1, z) is not identically zero and
for any z2 ∈ Cd2 , z 7→ ΦG (z , z2) is not identically zero.

When X (1) and X (2) are not deterministic, if H(ρ), ρ < 2, and HD
hold, X (1) and X (2) can not be independent random variables

Let U(1) and U(2) be two independent random variables in Rd1 and

Rd2 respectively that satisfy H(ρ) for some ρ ≥ 1, then U =

(
U(1)

U(2)

)
satisfies HD if and only if U(1) and U(2) are Gaussian or Dirac
random variables.
From ΦU(z1, z2) = ΦU(1)(z1)ΦU(2)(z2) and
Hadamard+Marckinciewitz.

E.Gassiat (UPS and CNRS) Fabrice Le Croisic 17 / 44



Identifiability theorem

• Assumption HD :
For any z1 ∈ Cd1 , z 7→ ΦG (z1, z) is not identically zero and
for any z2 ∈ Cd2 , z 7→ ΦG (z , z2) is not identically zero.

When X (1) and X (2) are not deterministic, if H(ρ), ρ < 2, and HD
hold, X (1) and X (2) can not be independent random variables

Let U(1) and U(2) be two independent random variables in Rd1 and

Rd2 respectively that satisfy H(ρ) for some ρ ≥ 1, then U =

(
U(1)

U(2)

)
satisfies HD if and only if U(1) and U(2) are Gaussian or Dirac
random variables.
From ΦU(z1, z2) = ΦU(1)(z1)ΦU(2)(z2) and
Hadamard+Marckinciewitz.

E.Gassiat (UPS and CNRS) Fabrice Le Croisic 17 / 44



Identifiability theorem

Theorem (EG, S. Le Corff, L. Lehéricy (AOS 2022))

Assume that G and G̃ are probability distributions on RD which
satisfy assumption H(ρ) for some ρ < 2 and which satisfy HD.
Then, PG ,Q = P

G̃ ,Q̃
implies that G = G̃ and Q = Q̃ up to

translation.
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When does (HD) hold ?

Repeated measurements

Y =

(
Y (1)

Y (2)

)
=

(
X (1)

X (1)

)
+

(
ε(1)

ε(2)

)
= X + ε .

Assumption HD always holds.

ΦX (z1, z2) = ΦX (1)(z1 + z2).

The particular case of repeated observations : Delaigle et al.
(2008) ; Meister (2010).
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When does (HD) hold ?

Errors in variable regression models

Y =

(
Y (1)

Y (2)

)
=

(
X (1)

g(X (1))

)
+

(
ε(1)

ε(2)

)
= X + ε ,

where g : Rd1 → Rd2 .

Asume H(ρ). Then Assumption HD holds as soon as g is
one-to-one on a subset of the support of X1 with positive
probability

ΦX (z1, z) = E
[
E
(

exp
(
iz>1 X (1)

)
|g(X (1))

)
exp

(
iz>X (1)

)]
.
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When does (HD) hold ?

Noisy non linear ICA (H. Halva, S. Le Corff, L. Lehéricy, J. So,
Y. Zhu, EG, A. Hyvarinen (NeurIPS 2021 ))
There exists an unknown integer q ≥ 1, an unknown function
h : Rq → RD , and a sequence of random vectors Si ∈ Rq with
independent coordinates such that

Yi = h (Si ) + εi .
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When does HD hold ? Geometrical condition

(H1) For any ∆ > 0, there exists A∆ ⊂ Rd2 and B∆ ⊂ Rd1 such that
P(X (2) ∈ A∆) > 0, lim∆→0 Diam(B∆) = 0 and
P(X (1) ∈ B∆ |X (2) ∈ A∆) = 1.

(H2) For any ∆ > 0, there exists A∆ ⊂ Rd1 and B∆ ⊂ Rd2 such that
P(X (1) ∈ A∆) > 0, lim∆→0 Diam(B∆) = 0 and
P(X (2) ∈ B∆ |X (1) ∈ A∆) = 1.

Theorem (J. Capitao-Miniconi, EG, L. Lehéricy)

Assume that the distribution of X satisfies H(ρ), (H1) and (H2).
Then X satisfies H(ρ) and HD.
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When does HD hold ? Examples of supports

Any closed Euclidian sphere

Any strictly convex compact set in RD

The boundary of any strictly convex compact set

Sets having strictly convex extremities in two ’components’ or
boundaries of such sets
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Estimation of the characteristic function of the signal
From the Identifiability proof

Assume ΦG and φ satisfy H(ρ) and (HD). Then for any ν > 0,∫
[−ν,ν]D

|φ(t1, t2)ΦG (t1, 0)ΦG (0, t2)− ΦG (t1, t2)φ(t1, 0)φ(0, t2)|2 dt1dt2

= 0 ⇐⇒ φ = ΦG .

Notice that with

M(φ) =

∫
[−ν,ν]D

|φ(t1, t2)ΦY (t1, 0)ΦG (0, t2)

− ΦY (t1, t2)φ(t1, 0)φ(0, t2)|2dt1dt2 ,

M(φ) =

∫
|φ(t1, t2)ΦG (t1, 0)ΦG (0, t2)−ΦG (t1, t2)φ(t1, 0)φ(0, t2)|2

|φε(1)(t1)φε(2)(t2)|2dt1dt2.
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Estimation of the characteristic function of the signal
We get an estimator φ̂n of ΦG by minimizing Mn over a set of
functions satisfying H(ρ) and HD, with

Mn(φ) =

∫
[−νest,νest]d1+d2

|φ(t1, t2)φ̃n(t1, 0)φ̃n(0, t2)

− φ̃n(t1, t2)φ(t1, 0)φ(0, t2)|2dt1dt2 ,

where φ̃n(t1, t2) = 1
n

∑n
`=1 e

it>1 Y
(1)
` +it>2 Y

(2)
` .

Proposition (EG, S. Le Corff, L. Lehéricy (AOS 2022))

(Simplified). For any δ > 0, for any n ≥ n0, with high (controlled)
probability, ∫

[−ν,ν]D
|φ̂n(t)− ΦG (t)|2dt ≤ C

(
1

n1+δ

)
.
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Estimation : basic ideas

Estimation of the characteristic function at almost parametric rate
in L2([−ν, ν]D) for any D.

→ What can be written as a function of (ΦG (z))|z|≤M can be

estimated at almost parametric rate in L2([−ν, ν]D) for any D.
Example : radius of a sphere (EG, J. Capitao-Miniconi, EJS to
appear).

→ using that ΦG is multivariate analytic

Density estimation : Fourier inversion of a the truncation of a
polynomial expansion of φn ;

Support estimation : upper level set of the estimator of the
density of a smoothed version of G ;

Distribution estimation : restrict the estimator of the density of
a smoothed version of G to the estimated support.
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Density estimation
Model : X has a density

We truncate the polynomial expansion of φ̂n at some degree mρ,n

(to be chosen) and

f̂ρ(x) =
1

(2π)d

∫
[−ωρ,n,ωρ,n]d1+d2

exp(−it>x)
(
Tmρ,n φ̂n

)
(t)dt ,

for some ωρ,n > 0 to be chosen.
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Minimax rate : density estimation

Fix

mρ,n =

⌊
ρ

8

(
log n

log log(n/4)

)⌋
and ωρ,n = cρm

1/ρ
ρ,n /S

for some constant cρ ≤ νest ∧ 2
ρ exp(−(3d + 5)/2).

Theorem (EG, S. Le Corff, L. Lehéricy)

The rate of convergence of E‖f̂ρ − f ‖2
2 is

(
log n

log log n

)−2β/ρ
uniformly

for f in a Sobolev ball of regularity β.

• Automatically adaptive in β.

• Adaptivity in ρ by using a Lepski’s method → ρ̂.

• Matching lower bound.

• (Almost) same rate as when the characteristic function of the
noise is known on an interval
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Estimation of the support

The i.i.d. Xi have distribution G with support M (of possibly low
unknown dimension).
Let ψA a (well chosen) kernel, h a window, and g the density of the
smoothed distribution :

g = G ?ΨA,h.

Estimate g with

∀y ∈ RD , ĝn,ρ(y) =

(
1

2π

)D ∫
e−it

ᵀyF [ψA](ht) TmρΦ̂n,ρ(t)dt.

Finally, define an estimator of the support of the signal as the upper
level set

M̂ρ =
{
y ∈ RD | ĝn,ρ(y) > λn,ρ

}
for some λn,ρ.
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Estimation of the support

The loss function : truncated Hausdorff.
Since we allow the support to be a non-compact set, we fix K a
compact subset of RD and for any S1, S2 subsets of RD , with dH
the Hausdorff distance,

HK(S1, S2) = dH(S1∩K, S2∩K).

(a, d)-standard distributions.
For any positive constants a, d and r0, we define StK(a, d , r0) as the
set of positive measures G such that :

∀x ∈ K, ∀r ≤ r0, G (B(x , r)) ≥ ard .
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Estimation of the support : upper bound

Theorem (J. Capitao-Miniconi, EG, L. Lehéricy)

Let ρ ∈ [1, 2), a > 0 , d ≤ D, r0 > 0. It is possible to choose mρ, h
and λn,ρ depending whether d < D or d = D such that

sup
G∈StK(a,d ,r0)∩L(ρ,H)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [HK(MG ,M̂ρ)] ≤ C
log(log(n))

1
ρ

+A+1
A

log(n)
1
ρ

.

The rate deteriorates for signals having distributions with
heavier tails.

Not needed to know the intrinsic dimension of the support.

Adaptation to unknown ρ by model selection.

Almost matching lower bound.
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Estimation of the support : lower bound

Theorem (J. Capitao-Miniconi, EG, L. Lehéricy)

For any ρ ∈ (1, 2), S > 0, a > 0, d ≥ 1, r0 > 0, there exists a closed
set H? such that, for all n ≥ n0,

inf
M̂

sup
G∈StK(a,d ,r0)∩L(ρ,H?)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [HK(MG ,M̂)] ≥ C

log(n)
1
ρ

,

and for any δ ∈ (0, 1), for n ≥ nδ,

inf
M̂

sup
G∈StK(a,d ,r0)∩L(1,H?)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [HK(MG ,M̂)] ≥ C

log(n)1+δ
.

The proof uses the two-points method : the idea is to find two
distributions having supports as far as possible in the HK-loss, and a
noise such that the joint distributions of the observations have total
variation distance upper bounded by some η < 1.
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Estimation of the distribution
with compact support

G has compact support MG : ρ = 1.

Fix some η > 0 and define M̂η the η-enlargment of M̂.

Define P̂n,η, for any O borelian set of RD

P̂n,η(O) =
1∫

(M̂)η?
ĝ+
n,1(y)dy

∫
O∩(M̂)η?

ĝ+
n,1(y)dy ,

where ĝ+
n,1 = max {0, ĝn,1}.
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Estimation of the distribution
with compact support

Theorem (J. Capitao-Miniconi, EG, L. Lehéricy)

For any S > 0, a > 0, d ≥ 1, r0 > 0, n ≥ n0,

sup
G∈StK(a,d ,r0)∩L(1,H?)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [W2(G , P̂n,η)] ≤ C log log n

log n
.

Moreover there exists a closed set H? such that for any δ ∈ (0, 1),
for n ≥ nδ,

inf
P̂

sup
G∈StK(a,d ,r0)∩L(1,H?)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [W2(G , P̂)] ≥ c

(log n)1+δ
.
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Take-home message

Deconvolution is possible for multivariate signals without any
knowledge of the noise distribution, under very weak
assumptions.

Estimation of a density, minimax risk.

Simple geometric assumptions on the support of the signal
allow to apply the theory.

Estimation of the support in truncated Hausdorff risk : upper
bounds, almost matching lower bounds ; rate in a power of
log n (power depending on the tail of the signal distribution).

Estimation of the distribution and minimax rates for the
Wasserstein’s risk ;

(almost parametric rate for the estimation of the radius of a
sphere).
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Happy birthday brother !
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Manifold learning : some ideas (no noise)
Observations : points.
Aim : recover the (low dimensional) (nonlinear) support.

Balls centered on the observations.

Points on B(0, 1) ∩ B(0, 0.5)c Points on S(0, 1)
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Manifold learning : some ideas (no noise)
Observations : points.
Aim : recover the (low dimensional) (nonlinear) support.

Tangential Delaunay Complex. Local PCA.
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Manifold learning : some ideas (no noise)
Observations : points.
Aim : recover the (low dimensional) (nonlinear) support.

t-convex hull..
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Noisy data. What happens with noise ? Geometric
ideas

Small noise : stability of Tangential Delaunay Complex. Local PCA

Clutter noise : points ∼ (1− π)G + πU

Uniform noise around the shape
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Additive noise : stochastic ideas

Data Y1, . . . ,Yn are i.i.d. (independent and identically distributed)

The model is with additive independent noise :

Y = X + ε ,

X is the non-noisy variable of interest and ε is the noise,
X and ε are independent random variables.

Examples :
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Additive noise : examples
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