Efficient sampling to solve inverse problems with credibility intervals

P. Chainais

N. Dobigeon, F. Cœurdoux (IRIT), M. Vono, P.-A. Thouvenin, P. Palud, (CRIStAL) A. Repetti (Heriot-Watt Univ.)

April 5, 2023

Image deblurring

Image deblurring

Image inpainting

Image inpainting

Confidence intervals

Motivations

$$\mathbf{y} = \mathcal{A}(\mathbf{x}) + \mathbf{n}$$

- solve complex ill-posed ML or inverse problems
- big data in high dimensions
- good performances
- fast inference algorithms
- credibility intervals

with maybe some additional options such as:

- privacy preserving
- distributed computing

Bayesian approach + MCMC method

r even better?)

Motivations

$$\mathbf{y} = \mathcal{A}(\mathbf{x}) + \mathbf{n}$$

- solve complex ill-posed ML or inverse problems
- big data in high dimensions
- good performances
- fast inference algorithms
- credibility intervals

with maybe some additional options such as:

- privacy preserving
- distributed computing

Bayesian approach + MCMC method

(or even better?)

Flight schedule

- Inverse problems & Bayesian inference
 - The usual toolbox of inference
 - Optimization
 - The Bayesian approach
 - Unchained priors: Langevin algorithms
 - Applications
- 3 AXDA and the Split-Gibbs-Sampler
 - Asymptotically exact data augmentation: AXDA
 - Splitted Gibbs sampling (SGS)
 - SGS for inverse problems
 - Splitted & Augmented Gibbs sampling (SPA)
- 4 Examples & illustrations
 - Bayesian image restoration under Poisson noise
 - High dimensions and distributed sampling
 - Related works
- 6 Capitalizing on machine learning
- 6 Conclusion

Outline

Inverse problems & Bayesian inference

- The usual toolbox of inference
 - Optimization
 - The Bayesian approach
 - Unchained priors: Langevin algorithms
 - Applications
- 3 AXDA and the Split-Gibbs-Sampler
 - Asymptotically exact data augmentation: AXDA
 - Splitted Gibbs sampling (SGS)
 - SGS for inverse problems
 - Splitted & Augmented Gibbs sampling (SPA)
- Examples & illustrations
 - Bayesian image restoration under Poisson noise
 - High dimensions and distributed sampling
 - Related works
- 5 Capitalizing on machine learning
- 6 Conclusion

Ill-posed vs well-posed inverse problems

Well-posed problem in the sense of Hadamard Let \mathcal{X} , \mathcal{Y} be two Hilbert spaces. Consider an operator

$$egin{array}{ccc} \mathcal{A}:\mathcal{X}&
ightarrow\mathcal{Y}\ &x&\mapsto\mathcal{A}(x) \end{array}$$

Consider the problem which consists in finding x such that $y = \mathcal{A}(x)$. This problem is said to be well-posed in the sense of Hadamard if

- the problem admits a solution (existence);
- the problem admits a unique solution (unicity);

the solution is stable $(\mathcal{A}^{-1} \text{ is continuous})$: for any $\varepsilon > 0$, there exists $\delta(\varepsilon) > 0$ such that $(\forall y_1, y_2 \in \mathcal{Y}), \|y_1 - y_2\| \le \delta(\varepsilon) \Rightarrow \|x_1 - x_2\| \le \varepsilon$ where x_i is a solution to the problem $y_i = \mathcal{A}(x_i), i \in \{1, 2\}$.

Astrophysics: no ground truth

- observations y: radio spectrums w.r.t. chemical composition
- unknowns x: physical parameters,

 \Rightarrow to understand the birth of stars

Confidence intervals are crucial to acertain predictions

Pierre Palud's PhD with the ORION-B CONSORTIUM

Example 2: estimating the R_0 of Covid-19

Covid-19: no ground truth

- observations y: detected contaminations every day
- unknowns x: true # of contaminations & R parameter

 \Rightarrow to make decisions

Confidence intervals are crucial to acertain predictions

[Abry, Fort, Pascal, Pustelnik 2022]

Bayesian inference¹

- y: available data = observations
- x: unknown object of interest

¹Robert (2001), Gelman et al. (2003)

Bayesian inference

- y: available data = observations
- x: unknown object of interest

$$\underset{\hat{\mathbf{x}}}{\arg\min} \int L(\mathbf{x}, \hat{\mathbf{x}}) \pi(\mathbf{x}|\mathbf{y}) \mathrm{d}\mathbf{x}$$

Credibility regions C_{α} $\int_{\mathcal{C}_{\alpha}} \pi(\mathbf{x}|\mathbf{y}) \mathrm{d}\mathbf{x} = 1 - \alpha$

Outline

- Inverse problems & Bayesian inference
- The usual toolbox of inference
 - Optimization
 - The Bayesian approach
 - Unchained priors: Langevin algorithms
 - Applications
- 3 AXDA and the Split-Gibbs-Sampler
 - Asymptotically exact data augmentation: AXDA
 - Splitted Gibbs sampling (SGS)
 - SGS for inverse problems
 - Splitted & Augmented Gibbs sampling (SPA)
- 4 Examples & illustrations
 - Bayesian image restoration under Poisson noise
 - High dimensions and distributed sampling
 - Related works
- 5 Capitalizing on machine learning
- 6 Conclusion

The usual toolbox of inference

Optimization:

- $\bullet \ \ {\rm problem} \Rightarrow \ {\rm loss} \ {\rm function}$
- efficient algorithms
- theoretical guarantees
- interpretability / functional analysis

Bayesian approaches:

- probabilitic models
- uncertainty quantification
- Machine learning (deep):
 - $\bullet \ \ \mathsf{adaptive} \Rightarrow \mathsf{relevant}$
 - outstanding performance

toward the best of all worlds?

The optimization-based approach

Inverse problem \Rightarrow cost function

where f is typically

- convex (or not): easy optim., unique solution,
- a sum of various penalties: functional analysis,
- differentiable (or not) \Rightarrow gradient descent (or prox)

The optimization-based approach

$$\hat{\mathbf{x}} = \operatorname*{arg\,min}_{\mathbf{x}} f_1(\mathbf{x}|\mathbf{y}) + f_2(\mathbf{x})$$

If not differentiable: proximal operators and splitting

$$rgmin_{\mathbf{x}} f_1(\mathbf{x}|\mathbf{y}) + f_2(\mathbf{z})$$
 such that $\mathbf{x} = \mathbf{z}$

maybe relaxed to (ADMM)

$$\underset{\mathbf{x},\mathbf{z},\mathbf{u}}{\arg\min f_1(\mathbf{x}|\mathbf{y}) + f_2(\mathbf{z}) + \frac{\alpha}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + \mathbf{u}^T(\mathbf{x} - \mathbf{z})$$

$$\operatorname{prox}_{f_2}(\mathbf{x}) = \argmin_{\mathbf{z}} f_2(\mathbf{z}) + \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2$$

 \Longrightarrow zoo of prox op.

The Bayesian approach

Inverse problems & **Bayes** posterior \propto likelihood(f1) \times prior(f2)

 \Rightarrow define a **posterior distribution** $p(\mathbf{x}|\mathbf{y}) \propto p_1(\mathbf{y}|\mathbf{x}) \cdot p_2(\mathbf{x})$

where p_2 is typically

- priors: statistical properties
- ► conjugate ⇒ easy sampling/inference
- ▶ log-concave (or not) \leftrightarrow f_2 convex

Solution:

explicit computations in nice conjugate models

sampling methods and MCMC, e.g. Gibbs sampling

 $x_i \sim p(x_i | x_{\setminus i}) \quad \forall 1 \leq i \leq d$

The Bayesian approach

Conjugate models: the exponential family

Inverse problems & Bayes posterior \propto likelihood(f1) \times prior(f2) \Rightarrow define a **posterior distribution** $p(\mathbf{x}|\mathbf{y}) \propto p_1(\mathbf{y}|\mathbf{x}) \cdot p_2(\mathbf{x})$

The exponential family (likelihood)

$$p_1(\mathbf{y}|\mathbf{x}) = h_1(\mathbf{y})g(\mathbf{x})\exp\left[\mathbf{x}^T\mathbf{u}(\mathbf{y})\right]$$

Conjugate prior (existence of non-informative priors as well...)

$$p_2(\mathbf{x}|\alpha,\beta) = h_2(\alpha,\beta)g(\mathbf{x})^{\beta}\exp\left[\beta\mathbf{x}^{\mathsf{T}}\alpha\right]$$

Posterior distribution knowing N i.i.d. observations y_n

$$p(\mathbf{x}|\mathbf{Y}) \propto g(\mathbf{x})^{\beta+N} \exp\left[\mathbf{x}^T \left(\sum_n \mathbf{u}(\mathbf{y}_n) + \beta \alpha\right)\right]$$

The Bayesian approach

Non conjugate models: sampling and Monte Carlo methods¹

$$\int h(\mathbf{x}) \pi(\mathbf{x}|\mathbf{y}) d\mathbf{x} \approx \frac{1}{N} \sum_{n=1}^{N} h\left(\mathbf{x}^{(n)}\right), \quad \mathbf{x}^{(n)} \sim \pi(\mathbf{x}|\mathbf{y})$$

e.g. $\hat{\mathbf{x}}_{MMSE} = \widehat{\mathbf{E}[\mathbf{x}|\mathbf{y}]} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)}$

h

Sampling challenges:
$$-\log \pi(\mathbf{x}|\mathbf{y}) = \sum_{i=1}^{n} f_i(\mathbf{x})$$

- ► {f_i; i ∈ [b]}: non-conjugate, non-smooth...
- ▶ $\mathbf{x} \in \mathbb{R}^d$ with $d \gg 1$

The Bayesian approach: using unchained priors Non conjugate models: sampling and Monte Carlo methods²

Inverse problems & **Bayes** posterior \propto likelihood(f1) \times prior(f2) \Rightarrow define a **posterior distribution** $p(\mathbf{x}|\mathbf{y}) = p_1(\mathbf{x}|\mathbf{y}) \cdot p_2(\mathbf{x})$

- If "complex properties"... difficult sampling!
 - non-conjugate priors: from optimization, learning,...
 - rich models: sophisticated prior distributions
 - big datasets: expensive computations
 - $f_2 = -\log p_2$ not differentiable

Discretized Langevin process: ULA

Langevin stochastic differential equation:

$$d\mathbf{x}(t) = \nabla \log p(\mathbf{x}(t)|\mathbf{y}) + \sqrt{2} d\mathbf{w}(t),$$

where $\mathbf{w}(t)$ is a *d*-dimensional Brownian motion.

Unadjusted Langevin Algorithm: Euler-Maruyama scheme (ULA)

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \mathbf{x}^{(k)} + \delta \nabla \log p(\mathbf{x}^{(k)} | \mathbf{y}) + \sqrt{2\delta} \mathbf{w}^{(k+1)}, \\ \mathbf{w}^{(k+1)} &\sim \mathcal{N}(0, I_d) \end{aligned}$$

$$\Rightarrow \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \nabla \underbrace{\log p(\mathbf{y}|\mathbf{x}^{(k)}|\mathbf{y})}_{-f_1(\mathbf{x})} + \delta \nabla \underbrace{\log p(\mathbf{x}^{(k)})}_{-f_2(\mathbf{x})} + \sqrt{2\delta} \mathbf{w}^{(k+1)}$$

► discretized Langevin process ⇒ Monte Carlo Markov Chain

Metropolis Adjusted Langevin Algorithm: MALA

Unadjusted Langevin Algorithm: Euler-Maruyama scheme = ULA

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \nabla \log p(\mathbf{x}^{(k)}|\mathbf{y}) + \sqrt{2\delta} \mathbf{w}^{(k+1)}$$

 $\mathbf{w}^{(k+1)} ~\sim~ \mathcal{N}(0, I_d)$

 \Longrightarrow approximation: accuracy vs convergence speed

 \implies correction by Metropolis-Hastings acceptation step: MALA Durmus and Moulines (2017)

Rk: SK-ROCK = Runge-Kutta 4 discretization scheme is much better than Euler-Maruyama Pereyra et al. (2020)

MYULA: bridging sampling to optimization

ULA: Unadjusted Langevin Algorithm

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \nabla \underbrace{\log p(\mathbf{y}|\mathbf{x}^{(k)})}_{-f_1(\mathbf{x})} + \delta \nabla \underbrace{\log p(\mathbf{x}^{(k)})}_{-f_2(\mathbf{x})} + \sqrt{2\delta} \mathbf{w}^{(k+1)}$$

 $\mathbf{w}^{(k+1)} ~\sim~ \mathcal{N}(0, I_d)$

$$\implies \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \delta \nabla f_1(\mathbf{x}) - \delta \nabla f_2(\mathbf{x}) + \sqrt{2\delta} \mathbf{w}^{(k+1)}$$

but $f_2 = -\log p_2$ not differentiable: $\nabla f_2(\mathbf{x}) \Longrightarrow \mathbf{x} - \operatorname{prox}_{\lambda f_2}(\mathbf{x})$

MYULA: bridging sampling to optimization

MYULA: Moreau-Yosida Unadjusted Langevin Algorithm.

Idea: replace $f_2(\mathbf{x})$ by its Moreau envelope

$$f_2^{(\lambda)}(\mathsf{x}) = \inf_{\mathsf{u} \in \mathbb{R}^d} f_2(\mathsf{u}) + rac{1}{2\lambda} \|\mathsf{u} - \mathsf{x}\|_2^2$$

 $\implies \nabla \log p_{\lambda}$ is Lipshitz continuous: $\nabla f_2^{(\lambda)}(\mathbf{x}) = \frac{1}{\lambda} [\mathbf{x} - \operatorname{prox}_{\lambda f_2}(\mathbf{x})]$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} \underbrace{-\delta \nabla f_1(\mathbf{x})}_{likelihood} + \delta \underbrace{\frac{1}{\lambda} [\operatorname{prox}_{\lambda f_2}(\mathbf{x}) - \mathbf{x}]}_{prior} + \sqrt{2\delta} \mathbf{w}^{(k+1)}$$

Pereyra et al. (2016); Durmus and Moulines (2017); Durmus et al. (2018a) = good approx. when $\lambda \to 0$

collab. Obs. of Paris : P. Palud (PhD), F. Le Petit, E. Bron, P.-A. Thouvenin

Astrophysics: no ground truth

- observations y: radio spectrums w.r.t. chemical composition
- unknowns θ : physical parameters,

 \Rightarrow to understand the birth of stars

Confidence intervals are crucial to acertain predictions

ORION-B CONSORTIUM

Mixture of noises and sampling non-log-concave posterior distributions

collab. Obs. of Paris : P. Palud (PhD), F. Le Petit, E. Bron, P.-A. Thouvenin

N pixels, L wavelengths, no groundtruth

$$y_{n,\ell} = \max\left\{\omega, \ \epsilon_{n,\ell}^{(m)} \ f_{n,\ell}(\Theta) + \epsilon_{n,\ell}^{(a)}\right\}$$

 $\begin{array}{ccc} \theta_n \in \mathbb{R}^d & \text{parameters to} \\ f & \text{black-box, span} \\ \epsilon_{n,\ell}^{(a)} \sim \mathcal{N}(0,\sigma_a^2) & \text{instrum} \\ \epsilon_{n,\ell}^{(m)} \sim \log \mathcal{N}(0,\sigma_m^2) & \text{calibra} \\ \omega > 0 & \text{instrument d} \end{array}$

parameters to infer on pixel *n* black-box, spans multiple decades instruments noise calibration error instrument detectability limit

How to deal with

black-box and non linear forward map f ? mixture of additive and multiplicative noises?

Mixture of noises and sampling non-log-concave posterior distributions

collab. Obs. of Paris : P. Palud (PhD), F. Le Petit, E. Bron, P.-A. Thouvenin

N pixels, L wavelengths, no groundtruth

$$y_{n,\ell} = \max\left\{\omega, \ \epsilon_{n,\ell}^{(m)} \ f_{n,\ell}(\Theta) + \epsilon_{n,\ell}^{(a)}\right\}$$

 $\begin{array}{ll} \boldsymbol{\theta}_n \in \mathbb{R}^d & \text{parameters to infer on pixel } n \\ f & \text{black-box, spans multiple decades} \\ \boldsymbol{\epsilon}_{n,\ell}^{(a)} \sim \mathcal{N}(0, \sigma_a^2) & \text{instruments noise} \\ \boldsymbol{\epsilon}_{n,\ell}^{(m)} \sim \log \mathcal{N}(0, \sigma_m^2) & \text{calibration error} \\ \boldsymbol{\omega} > 0 & \text{instrument detectability limit} \end{array}$

How to deal with black-box and non linear forward map f ? mixture of additive and multiplicative noises?

Mixture of noises and sampling non-log-concave posterior distributions

collab. Obs. of Paris : P. Palud (PhD), F. Le Petit, E. Bron, P.-A. Thouvenin

N pixels, L wavelengths, no groundtruth

$$y_{n,\ell} = \max\left\{\omega, \ \epsilon_{n,\ell}^{(m)} \ f_{n,\ell}(\Theta) + \epsilon_{n,\ell}^{(a)}\right\}$$

 $\begin{array}{ll} \boldsymbol{\theta}_n \in \mathbb{R}^d & \text{parameters to infer on pixel } n \\ f & \text{black-box, spans multiple decades} \\ \boldsymbol{\epsilon}_{n,\ell}^{(a)} \sim \mathcal{N}(0,\sigma_a^2) & \text{instruments noise} \\ \boldsymbol{\epsilon}_{n,\ell}^{(m)} \sim \log \mathcal{N}(0,\sigma_m^2) & \text{calibration error} \\ \boldsymbol{\omega} > 0 & \text{instrument detectability limit} \end{array}$

How to deal with black-box and non linear forward map f? mixture of additive and multiplicative noises?

A priori & regularization

a priori information on $\Theta \in \mathbb{R}^{N \times D}$ combines 2 priors:

- spatial regularization, e.g.,
 - smoothed Total Variation (TV is not diff. \Rightarrow MYULA)
 - L₂-norm of image gradient
 - L₂-norm of image Laplacian
 - L₂-norm of image wavelet decomposition

validity domain for each physical parameter $\theta_{n,d}$

 \implies BUT non-smooth

 \implies smooth penalty function when $\theta_{n,d}$ is out of validity domain:

${\sf Example: \ radio-astronomy - ORION-B}$

Proposed sampler: mixing 2 kernels

Forward model covers multiple decades

 \rightarrow Preconditioned-MALA kernel with RMSProp

Role: Efficient local exploration Limitation: restricted to smooth log-posteriors

Non-log-concave posterior
 Multiple-Try Metropolis (MTM) kernel
 Role: jumps between modes

Illustration: 2D Gaussian mixture model - MALA steps

Illustration: 2D Gaussian mixture model - MALA steps

Illustration: 2D Gaussian mixture model - MALA steps

Illustration: 2D Gaussian mixture model - MTM steps

Illustration: 2D Gaussian mixture model - MTM steps

Illustration: 2D Gaussian mixture model - MALA + MTM

Application to a synthetic dataset

Outline

- Inverse problems & Bayesian inference
- 2 The usual toolbox of inference
 - Optimization
 - The Bayesian approach
 - Unchained priors: Langevin algorithms
 - Applications

3 AXDA and the Split-Gibbs-Sampler

- Asymptotically exact data augmentation: AXDA
- Splitted Gibbs sampling (SGS)
- SGS for inverse problems
- Splitted & Augmented Gibbs sampling (SPA)
- Examples & illustrations
 - Bayesian image restoration under Poisson noise
 - High dimensions and distributed sampling
 - Related works
- 5 Capitalizing on machine learning
- 6 Conclusion

The Bayesian approach augmented by splitting

Exploit the synergy: Monte Carlo sampling / optimization

Seminal works : HMC, (MY)ULA

efficient & simple sampling

- in high dimension
- in distributed architectures

Recall: $\operatorname{prox}_{\lambda f_2}(x) = \arg \min_{\mathbf{z}} \lambda f_2(\mathbf{z}) + \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 \Rightarrow \text{zoo of prox}$

The Bayesian approach augmented by splitting: AXDA

Inverse problems & Bayes posterior \propto likelihood(f1) \times prior(f2)

 \Rightarrow define a **posterior distribution** $p(\mathbf{x}|\mathbf{y}) = p_1(\mathbf{x}|\mathbf{y}) \cdot p_2(\mathbf{x})$

The Bayesian approach augmented by splitting: AXDA

Inverse problems & Bayes posterior \propto likelihood(f1) \times prior(f2)

 \Rightarrow define a **posterior distribution** $p(\mathbf{x}|\mathbf{y}) = p_1(\mathbf{x}|\mathbf{y}) \cdot p_2(\mathbf{x})$

The Bayesian approach augmented by splitting: AXDA

Inverse problems & **Bayes** posterior \propto likelihood(*f*1) \times prior(*f*2)

 \Rightarrow define a **posterior distribution** $p(\mathbf{x}|\mathbf{y}) = p_1(\mathbf{x}|\mathbf{y}) \cdot p_2(\mathbf{x})$

"complex properties" \implies difficult sampling

Strategy:Divide-to-Conquer + efficient sampling \implies splitting (SP) and augmentation (SPA)

Approximate the true posterior: Asymp. eXact Data Augment.

 $\pi(\mathbf{x}) \propto \exp\left[-f_1(\mathbf{x}) - f_2(\mathbf{x})\right]$ \Downarrow $\pi_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{u}) \propto \exp\left[-f_1(\mathbf{x}) - f_2(\mathbf{z}) - \frac{1}{2\rho^2} \|\mathbf{u} - \mathbf{x} + \mathbf{z}\|_2^2 - \frac{1}{2\alpha^2} \|\mathbf{u}\|^2\right]$

Recall: $\operatorname{prox}_{\lambda f_2}(x) = \operatorname{arg\,min}_{\mathbf{z}} \lambda f_2(\mathbf{z}) + \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2$

The Bayesian approach augmented by splitting: AXDA Inverse problems & Bayes posterior \propto likelihood(f1) \times prior(f2)

 \Rightarrow define a **posterior distribution** $p(\mathbf{x}|\mathbf{y}) = p_1(\mathbf{x}|\mathbf{y}) \cdot p_2(\mathbf{x})$

"complex properties" \implies difficult sampling

Strategy:Divide-to-Conquer + efficient sampling \implies splitting (SP) and augmentation (SPA)

Approximate the true posterior: Asymp. eXact Data Augment.

Recall: $\operatorname{prox}_{\lambda f_2}(x) = \operatorname{arg\,min}_{z} \lambda f_2(z) + \frac{1}{2} ||\mathbf{x} - \mathbf{z}||_2^2$

The Bayesian approach augmented by splitting: AXDA Inverse problems & **Bayes** posterior \propto likelihood(f1) \times prior(f2) \Rightarrow define a **posterior distribution** $p(\mathbf{x}|\mathbf{y}) = p_1(\mathbf{x}|\mathbf{y}) \cdot p_2(\mathbf{x})$

Approximate the true posterior: Asymp. eXact Data Augment.

$$\pi(\mathbf{x}) \propto \exp\left[-f_1(\mathbf{x}) - f_2(\mathbf{x})\right]$$

$$\Downarrow$$

$$\pi_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{u}) \propto \exp\left[-f_1(\mathbf{x}) - f_2(\mathbf{z}) - \frac{1}{2\rho^2} \|\mathbf{u} - \mathbf{x} + \mathbf{z}\|_2^2 - \frac{1}{2\alpha^2} \|\mathbf{u}\|^2\right]$$

Recall: $\operatorname{prox}_{\lambda f_2}(x) = \operatorname{arg\,min}_{z} \lambda f_2(z) + \frac{1}{2} ||\mathbf{x} - \mathbf{z}||_2^2$

Asymptotically exact data augmentation (AXDA) Motivations

Let $\pi \in L^1$ a target **probability distribution** with density with respect to (w.r.t.) the Lebesgue measure

$$\pi(\mathbf{x}) \propto \exp(-f(\mathbf{x}))$$

where $f : \mathcal{X} \subseteq \mathbb{R}^d \to (-\infty, +\infty]$ stands for a **potential** function.

With a slight abuse of notations, π shall refer to

- a prior $\pi(\mathbf{x})$,
- ► a likelihood $\pi(\mathbf{x}) \triangleq \pi(\mathbf{y}|\mathbf{x})$,
- ► a posterior $\pi(\mathbf{x}) \triangleq \pi(\mathbf{x}|\mathbf{y})$,

where \mathbf{y} are observations.

Asymptotically exact data augmentation (AXDA) Motivations

Let $\pi \in L^1$ a target **probability distribution** with density with respect to (w.r.t.) the Lebesgue measure

$$\pi(\mathbf{x}) \propto \exp(-f(\mathbf{x}))$$

where $f : \mathcal{X} \subseteq \mathbb{R}^d \to (-\infty, +\infty]$ stands for a **potential** function.

Assumption 1

Inference from π is difficult and possibly inefficient.

Examples:

- non-trivial maximum likelihood estimation
- difficult posterior sampling with poor mixing chains

Data augmentation (DA)

Idea: introduce auxiliary variables \mathbf{z} such that

$$\int_{\mathcal{Z}} \pi(\mathbf{x}, \mathbf{z}) \mathrm{d}\mathbf{z} = \pi(\mathbf{x}).$$

Numerous well-known advantages:

- ▶ augmented likelihood $\pi(\mathbf{x}, \mathbf{z}) \triangleq \pi(\mathbf{y}, \mathbf{z} | \mathbf{x})$ easier to work with
- ▶ joint posterior $\pi(\mathbf{x}, \mathbf{z}) \triangleq \pi(\mathbf{x}, \mathbf{z}|\mathbf{y})$ with simpler conditionals
- improved inference (multimodal problems, mixing properties)

The art of exact data augmentation: XDA

Unfortunately, satisfying

$$\int_{\mathcal{Z}} \pi(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \pi(\mathbf{x}) \quad (XDA)$$

is a matter of **art** (van Dyk and Meng 2001).

Difficulties:

• finding
$$\pi(\mathbf{x}, \mathbf{z})$$
 (Geman and Yang 1995)

 scaling in high-dimensional/big data settings (Neal 2003; Polson et al. 2013).

Idea: relax (XDA) while keeping XDA's advantages How to build $\pi_{\rho}(\mathbf{x}, \mathbf{z})$ such that $\int \pi_{\rho}(\mathbf{x}, \mathbf{z}) d\mathbf{z} \xrightarrow[\rho \to 0]{} \pi(\mathbf{x})$?

Asymptotically exact data augmentation (AXDA)

Let consider an augmented density $p_{\rho}(\mathbf{x}, \mathbf{z})$ and define

$$\pi_{
ho}(\mathbf{x}) = \int_{\mathcal{Z}} p_{
ho}(\mathbf{x}, \mathbf{z}) \mathrm{d}\mathbf{z},$$

where $\rho > 0$.

Assumption 2 For all $\mathbf{x} \in \mathcal{X}$, $\lim_{\rho \to 0} \pi_{\rho}(\mathbf{x}) = \pi(\mathbf{x})$.

Theorem 1 (Scheffé 1947)

Under Assumption 2,

$$\|\pi_{\rho} - \pi\|_{\mathrm{TV}} \xrightarrow[\rho \to 0]{} 0.$$

Choice of the augmented density

Take inspiration from variable splitting in optimization

```
(Boyd et al. 2011)...
```

This motivates the choice (Vono et al. 2019a)

$$p_
ho(\mathbf{x},\mathbf{z}) \propto \exp(-f(\mathbf{z}) - \phi_
ho(\mathbf{x},\mathbf{z}))$$

- simplify the inference (Vono et al. 2019a)
- distribute the inference (Rendell et al. 2021)
- accelerate the inference (Vono et al. 2019a).

Splitted Gibbs sampling (SGS)

$$\pi(\mathbf{x}) \propto \exp\left[-f_1(\mathbf{x}) - f_2(\mathbf{x})\right]$$

$$\downarrow$$

$$\pi(\mathbf{x}, \mathbf{z} | \mathbf{x} = \mathbf{z}) \propto \exp\left[-f_1(\mathbf{x}) - f_2(\mathbf{z})\right] \text{ knowing that } \mathbf{x} = \mathbf{z}$$

$$\downarrow$$

$$\pi_{\rho}(\mathbf{x}, \mathbf{z}) \propto \exp\left[-f_1(\mathbf{x}) - f_2(\mathbf{z}) - \frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z}\|_2^2\right]$$

Splitted Gibbs sampling (SGS)

Splitted Gibbs sampling (SP): Theorem

Consider the marginal of **x** under
$$\pi_{\rho}$$
:
 $p_{\rho}(\mathbf{x}) = \int_{\mathbb{R}^d} \pi_{\rho}(\mathbf{x}, \mathbf{z}) \mathrm{d}\mathbf{z} \propto \int_{\mathbb{R}^d} \exp\left[-f_1(\mathbf{x}) - f_2(\mathbf{z}) - \phi_{\rho}(\mathbf{x}, \mathbf{z})\right] \mathrm{d}\mathbf{z}$.

Theorem

Assume that in the limiting case ho
ightarrow 0, $\phi_{
ho}$ is such that

$$\frac{\exp\left(-\phi_{\rho}(\mathbf{x},\mathbf{z})\right)}{\int_{\mathbb{R}^{d}}\exp\left(-\phi_{\rho}(\mathbf{x},\mathbf{z})\right)\mathrm{d}\mathbf{x}}\xrightarrow{\rho\to0}\delta_{\mathbf{x}}(\mathbf{z})$$

Then p_{ρ} coincides with π when $\rho \rightarrow 0$, that is

$$\|p_{\rho} - \pi\|_{\mathrm{TV}} \xrightarrow[\rho \to 0]{} 0$$

+ non asymptotic convergence bounds when $\phi_{
ho} = \,$ Gaussian

Non-asymptotic guarantees for Gaussian smoothing

$$\pi_{\rho}(\mathbf{x}|\mathbf{y}) \propto \prod_{i=1}^{b} \int_{\mathbb{R}^{d_{i}}} \underbrace{e^{-f_{i}(\mathbf{z}_{i})}}_{\pi_{i}(\mathbf{z}_{i})} \underbrace{\mathcal{N}\left(\mathbf{z}_{i}|\mathbf{A}_{i}\mathbf{x},\rho^{2}\mathbf{I}_{d}\right)}_{\phi_{\rho}(\mathbf{z}_{i},\mathbf{A}_{i}\mathbf{x})} \mathrm{d}\mathbf{z}_{i}$$

Splitted Gibbs sampling (SP): conditional distributions

Full conditional distributions under the split distribution π_{ρ} :

$$\pi_{
ho}(\mathbf{x}|\mathbf{z}) \propto \exp\left(-f_1(\mathbf{x}) - \phi_{
ho}(\mathbf{x},\mathbf{z})
ight)$$

$$\pi_{
ho}(\mathbf{z}|\mathbf{x}) \propto \exp\left(-f_2(\mathbf{z}) - \phi_{
ho}(\mathbf{x}, \mathbf{z})\right).$$

Note that f_1 and f_2 are now separated in 2 distinct distributions

State of the art sampling methods:

- Gaussian variables: Fourier or Aux-V1 or E-PO
- MYULA = proximal MCMC,

Splitted Gibbs sampling (SP): conditional distributions

Full conditional distributions under the split distribution π_{ρ} :

$$\pi_{
ho}(\mathbf{x}|\mathbf{z}) \propto \exp\left(-f_1(\mathbf{x}) - \frac{1}{2
ho^2} \|\mathbf{x} - \mathbf{z}\|_2^2
ight)$$

 $\pi_{
ho}(\mathbf{z}|\mathbf{x}) \propto \exp\left(-f_2(\mathbf{z}) - \frac{1}{2
ho^2} \|\mathbf{x} - \mathbf{z}\|_2^2
ight).$

Note that f_1 and f_2 are now separated in 2 distinct distributions

State of the art sampling methods:

- Gaussian variables: Fourier or Aux-V1 or E-PO
- MYULA = proximal MCMC,

Partial conclusion

Efficient sampling for inverse problems in high dimensions

Inverse problems and Bayesian inference

- optimization
- the usual Bayesian toolbox
- focus on Langevin sampling: ULA, MALA, MYULA

SGS & SPA split-and-augment strategy

- Bayesian inference for complex models
- large scale problems (big & tall)
- confidence intervals
- Efficient algorithms for inference:
 - acceleration of state-of-the-art sampling algorithms
 - distributed inference (privacy, distr. comput.)
- AXDA: unifying statistical framework
 - asymptotically exact: control parameter ρ
 - non-asymptotic theoretical guarantees

Coming next: applications & extensions

Distributed sampling: fast and scalable: SPMD

- localized operators
- distributed computing: coding
- confidence intervals
- unifying statistical framework: AXDA
 - ELSA for PCGS: Mehdi Amrouche's PhD (J. Idier & H. Carfantan)
 - VAE prior + AXDA: Mario Gonzalez's PhD (A. Almansa, P. Muse)

Generative models for inference: PnP-ULA & PnP-SGS

- learning sampling networks
- evaluating posterior distributions

Splitted Gibbs sampling (SP/SGS): inverse problems Linear Gaussian inverse problems

 $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n},$

where $\mathbf{A} = \text{damaging operator and } \mathbf{n} \sim \mathcal{N}\left(\mathbf{0}_{d}, \sigma^{2}\mathbf{I}_{d}\right) = \text{noise.}$

$$\left\{ egin{array}{ll} f_1(\mathbf{x}) &= rac{1}{2\sigma^2} \left\| \mathbf{y} - \mathbf{A} \mathbf{x}
ight\|_2^2 & orall \mathbf{x} \in \mathbb{R}^d, \ f_2(\mathbf{x}) &= au \psi(\mathbf{x}), \quad au > 0. \end{array}
ight.$$

Then the SP conditional distributions are:

$$\begin{aligned} \pi_{\rho}(\mathbf{x}|\mathbf{z}) &= \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{x}}, \mathbf{Q}_{\mathbf{x}}^{-1}\right) \\ \pi_{\rho}(\mathbf{z}|\mathbf{x}) \propto \exp\left(-\tau\psi(\mathbf{z}) - \frac{1}{2\rho^{2}} \left\|\mathbf{z} - \mathbf{x}\right\|_{2}^{2}\right), \end{aligned}$$

Splitted Gibbs sampling (SP/SGS): efficient sampling

Linear Gaussian inverse problems

$$\begin{split} \pi_{\rho}(\mathbf{x}|\mathbf{z}) &= \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{x}}, \mathbf{Q}_{\mathbf{x}}^{-1}\right) \\ \pi_{\rho}(\mathbf{z}|\mathbf{x}) &\propto \exp\left(-\tau\psi(\mathbf{z}) - \frac{1}{2\rho^2} \left\|\mathbf{z} - \mathbf{x}\right\|_2^2\right), \end{split}$$

Examples:

Tikhonov regularization

$$\psi(\mathbf{z}) = \|\mathbf{Q}\mathbf{z}\|_2^2 \Rightarrow \text{Gaussian variables}$$

(e.g. $\textbf{P} \text{ or } \textbf{Q} \text{ diagonalizable in Fourier} {\rightarrow} \text{E-PO})$

Convex non-smooth

 $\psi = \mathsf{TV}$, ℓ_1 sparsity... \Rightarrow proximal MCMC

Splitted Gibbs sampling (SP/SGS): TV deblurring

Linear Gaussian inverse problems

Posterior distribution

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\left[-rac{1}{2\sigma^2}\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 - \beta \mathrm{TV}(\mathbf{x})
ight]$$

where $\mathbf{P} = damaging operator (blur, binary mask...) and$

$$\mathrm{TV}(\mathbf{x}) = \sum_{1 \le i, j \le N} \left\| (\nabla \mathbf{x})_{i, j} \right\|_2$$

Direct sampling is challenging

- generally high dimension of the image,
- Inon-conjugacy of the TV-based prior,
- on-differentiability of g (≠ Hamiltonian Monte Carlo algorithms)

Splitted Gibbs sampling (SP/SGS): TV deblurring

Splitted Gibbs sampling (SP/SGS): TV deblurring Linear Gaussian inverse problems

Splitted Gibbs sampling (SP): TV deblurring Linear Gaussian inverse problems + 90% credibility intervals

Splitted Gibbs sampling (SP/SGS): TV deblurring

	SALSA	FISTA	SGS	P-MYULA
time (s)	1	10	470	3600
time ($ imes$ var. split.)	1	10	1	7.7
nb. iterations	22	214	$\sim 10^4$	10 ⁵
SNR (dB)	17.87	17.86	18.36	17.97

$$\mathsf{Rk}$$
 : $\rho^2 = 9$

Splitted Gibbs sampling (SP): TV deblurring

Splitted Gibbs sampling (SP): TV deblurring

Splitted & Augmented Gibbs sampling (SPA) (optional)

Motivation for augmentation:

better mixing properties of the Markov chain

 $\begin{aligned} \pi_{\rho,\alpha} &\triangleq \rho(\mathbf{x}, \mathbf{z}, \mathbf{u}; \rho, \alpha) \\ &\propto \exp\left[-f(\mathbf{x}) - g(\mathbf{z})\right] \\ &\times \exp\left[-\phi_1(\mathbf{x}, \mathbf{z} - \mathbf{u}; \rho) - \phi_2(\mathbf{u}; \alpha)\right] \end{aligned}$

Assumption 2

 ϕ_2 and ϕ_1 are such that $\forall \mathbf{x}, \mathbf{z} \in \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} \exp\left[-\phi_1(\mathbf{x}, \mathbf{z} - \mathbf{u}; \rho) - \phi_2(\mathbf{u}; \alpha)\right] d\mathbf{u}$$
$$\propto \exp\left[-\phi_1(\mathbf{x}, \mathbf{z}; \eta(\rho, \alpha))\right].$$
Splitted & Augmented Gibbs sampling (SPA) SPA Gibbs sampler

The conditional split-augmented distributions are:

$$p(\mathbf{x}|\mathbf{z},\mathbf{u};\rho) \propto \exp\left[-f(\mathbf{x}) - \frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z} + \mathbf{u}\|_2^2\right]$$
$$p(\mathbf{z}|\mathbf{x},\mathbf{u};\rho) \propto \exp\left[-g(\mathbf{z}) - \frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z} + \mathbf{u}\|_2^2\right]$$
$$p(\mathbf{u}|\mathbf{x},\mathbf{z};\rho,\alpha) \propto \exp\left[-\frac{\|\mathbf{u}\|_2^2}{2\alpha^2} - \frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z} + \mathbf{u}\|_2^2\right].$$

AXDA : comparing SPA & ADMM

Connection between MAP and ADMM

By replacing Gibbs sampling steps by optimizations, ADMM appears:

$$\mathbf{x}^{(t)} \in \arg\min_{\mathbf{x}} - \log p\left(\mathbf{x}|\mathbf{z}^{(t-1)}, \mathbf{u}^{(t-1)}; \rho\right)$$
$$\mathbf{z}^{(t)} \in \arg\min_{\mathbf{z}} - \log p\left(\mathbf{z}|\mathbf{x}^{(t)}, \mathbf{u}^{(t-1)}; \rho\right)$$
$$\mathbf{u}^{(t)} = \mathbf{u}^{(t-1)} + \mathbf{x}^{(t)} - \mathbf{z}^{(t)}$$

Outline

- Inverse problems & Bayesian inference
- 2 The usual toolbox of inference
 - Optimization
 - The Bayesian approach
 - Unchained priors: Langevin algorithms
 - Applications
- 3 AXDA and the Split-Gibbs-Sampler
 - Asymptotically exact data augmentation: AXDA
 - Splitted Gibbs sampling (SGS)
 - SGS for inverse problems
 - Splitted & Augmented Gibbs sampling (SPA)

4 Examples & illustrations

- Bayesian image restoration under Poisson noise
- High dimensions and distributed sampling
- Related works
- 5 Capitalizing on machine learning
- 6 Conclusion

Splitted & Augmented Gibbs sampling (SGS) in action $_{\mbox{\sc Applications}}$

Many problems can be considered using AXDA/SPA:

• Laplacian $+ \ell_2$ regularizer for deconvolution

M. Vono et al., "Split-and-augmented Gibbs sampler - Application to large-scale inference problems," in *IEEE Trans. Signal Processing*, 2019

Poisson noise + blur + non-negativity + ...

M. Vono et al., "Bayesian image restoration under Poisson noise and log-concave prior," in *Proc. ICASSP 2019*

Machine learning: logistic regression,...

M. Vono et al. (2018), "Sparse Bayesian binary logistic regression using the split-and-augmented Gibbs sampler," in *Proc. IEEE MLSP 2018*

Splitted & Augmented Gibbs sampling (SGS) in action $_{\mbox{\sc Applications}}$

Many problems can be considered using AXDA/SPA:

• Laplacian $+ \ell_2$ regularizer for deconvolution

M. Vono et al., "Split-and-augmented Gibbs sampler - Application to large-scale inference problems," in *IEEE Trans. Signal Processing*, 2019

Poisson noise + blur + non-negativity + …

M. Vono et al., "Bayesian image restoration under Poisson noise and log-concave prior," in *Proc. ICASSP 2019*

Machine learning: logistic regression,...

M. Vono et al. (2018), "Sparse Bayesian binary logistic regression using the split-and-augmented Gibbs sampler," in *Proc. IEEE MLSP 2018*

Bayesian image restoration under Poisson noise

Take-home message

Motivations

- Posterior distr. of estimators \rightarrow **Bayesian** + **MCMC**
- Quantify uncertainty

Challenges

- Poisson likelihood and distributed data
- \bullet Sophisticated prior \rightarrow difficult sampling

Contributions

- Variable splitting for MCMC (akin to the ADMM)
- Fast, general MCMC strategy
- State-of-the-art performance

Problem statement

Model: $\forall n \in \llbracket 1, N \rrbracket$,

 $y_n \sim \text{Poisson}([\mathbf{A}\mathbf{x}]_n), \quad \mathbf{A} = \text{blurring operator.}$

Neg. log likelihood:

$$\sum_{n=1}^{N} -y_n \log\left([\mathbf{A}\mathbf{x}]_n\right) + [\mathbf{A}\mathbf{x}]_n.$$

Prior:

x ≥ 0_d
 Total variation, ℓ₁, ...

Solution: splitting!

General problem formulation

Let $\pi \in L^1$ be the target posterior with neg. log density

$$-\log \pi(\mathbf{x}) = \sum_{\substack{n=1\\ \text{neg. log likelihood}}}^{N} f_n(\mathbf{A}_n \mathbf{x}) + \sum_{\substack{k=1\\ \text{neg. log prior}}}^{K} g_k(\mathbf{G}_k \mathbf{x}).$$

► **A**_n: blur, binary mask,

- f_n : Poisson neg. log likelihood.
- ▶ **G**_k: transform, dictionary, ...
- g_k : ℓ_1 norm, TV regularization, $\iota_{\mathbb{R}^d}$, ...

General problem formulation

Let $\pi \in L^1$ be the target posterior with neg. log density

$$-\log \pi(\mathbf{x}) = \sum_{\substack{n=1\\ \text{neg. log likelihood}}}^{N} f_n(\mathbf{A}_n \mathbf{x}) + \sum_{\substack{k=1\\ \text{neg. log prior}}}^{K} g_k(\mathbf{G}_k \mathbf{x}).$$

Issues:

- *f_n* continuously differentiable but not grad. Lipschitz
- large N + distributed data
- non-conjugate + non-smooth + multi-potential prior.

Variable splitting and the ADMM

Take inspiration from the **ADMM** and its **variable-splitting** formulation.

Reminder:
$$\begin{split} & \min_{\mathbf{x}} \ f_1(\mathbf{A}_1\mathbf{x}) + g_1(\mathbf{G}_1\mathbf{x}) \\ & \text{becomes} \\ & \min_{\mathbf{x}, \mathbf{z}_1, \mathbf{u}_1} \ f_1(\mathbf{u}_1) + g_1(\mathbf{z}_1) \\ & \text{such that} \\ & \mathbf{u}_1 = \mathbf{A}_1\mathbf{x} \text{ and } \mathbf{z}_1 = \mathbf{G}_1\mathbf{x} \end{split}$$

Variable splitting for sampling

Neg. log. posterior (cost function):

Variable splitting \rightarrow joint distribution $p_{\rho}(\mathbf{x}, \mathbf{z}_{1:K}, \mathbf{u}_{1:N})$ such that

$$-\log p_{\rho}(\mathbf{x}, \mathbf{z}_{1:K}, \mathbf{u}_{1:N}) = \sum_{\substack{n=1\\\text{split likelihood}}}^{N} f_{n}(\mathbf{u}_{n}) + \sum_{\substack{k=1\\\text{split prior}}}^{K} g_{k}(\mathbf{z}_{k})$$
$$+ \sum_{n=1}^{N} \frac{1}{2\rho^{2}} \|\mathbf{u}_{n} - \mathbf{A}_{n}\mathbf{x}\|^{2} + \sum_{k=1}^{K} \frac{1}{2\rho^{2}} \|\mathbf{z}_{k} - \mathbf{G}_{k}\mathbf{x}\|^{2}.$$

Split Gibbs sampler (SGS)

Sample from $p_{\rho}(\mathbf{x}, \mathbf{z}_{1:K}, \mathbf{u}_{1:N})$ with a simple, efficient and theoretically sound Gibbs sampler:

$$p_{\rho}(\mathbf{u}_{n}|\mathbf{x}) \propto \exp\left(-f_{n}(\mathbf{u}_{n}) - \frac{1}{2\rho^{2}} \|\mathbf{u}_{n} - \mathbf{A}_{n}\mathbf{x}\|^{2}\right)$$
$$p_{\rho}(\mathbf{z}_{k}|\mathbf{x}) \propto \exp\left(-g_{k}(\mathbf{z}_{k}) - \frac{1}{2\rho^{2}} \|\mathbf{z}_{k} - \mathbf{G}_{k}\mathbf{x}\|^{2}\right)$$

 $p_{\rho}(\mathbf{x}|\mathbf{z}_{1:K}, \mathbf{u}_{1:N}) : d$ -dimensional Gaussian.

Sampling: P-MYULA (Durmus et al. 2018b) for auxiliary \mathbf{u}_n , \mathbf{z}_k E-PO (Papandreou and Yuille 2010) for Gaussian \mathbf{x} .

Highlight

High-dimensional Gaussian sampling: a review and a unifying approach based on a stochastic proximal point algorithm

M. Vono, N. Dobigeon and P. C.

SIAM Review, vol. 64, no. 1, pp. 3-56, 2022

Vono et al. (2022a)

Model: $\forall n \in [\![1, N]\!]$, $y_n \sim \text{Poisson}([\mathbf{Ax}]_n)$, **A**: blurring operator.

Prior:
$$g_1 = \iota_{\mathbb{R}^d_+},$$

 $g_2: \ au\ell_1 ext{ or } au ext{TV}, \ au > 0.$

Images: 3 standard images with different intensity levels *M*.

Results

Results

norm. MAE = mean absolute error / M.

				norm. MAE		
image	approach	М	au	PIDAL	P-MYULA	SGS
Saturn	TV	300	0.1	0.01	0.01	0.01
neuron	ΤV	30	1	0.03	0.03	0.05
		100	1	0.03	0.03	0.03
cameraman	WT	30	0.1	0.08	0.07	0.10
		100	0.1	0.07	0.06	0.07
		255	0.1	0.07	0.06	0.06

State-of-the-art performance with controlled approximations.

Speed: SGS is 7 times faster than state-of-the-art MCMC, only \sim 40-100 times slower than ADMM.

Results

Bayesian image restoration under Poisson noise using SGS Conclusion

efficient & simple MCMC splitting strategy

- divide-and-conquer
- embeds & accelerate state-of-the-art algorithms
- yields comprehensive and excellent results.

based on the AXDA unifying statistical framework

- mixture-based models
- robust Bayesian models
- variable splitting-based models

non-asymptotic theoretical guarantees on the approximation under mild assumptions + explicit convergence rates.

Distributed sampling and data privacy

Regularized logistic regression by applying AXDA b times

 $\forall i \in [\![1, n]\!], \quad \mathbf{y}_i \sim \text{Bernoulli}\left(\sigma(\mathbf{a}_i^{T} \mathbf{x})\right)$

$$\pi(\mathbf{x}|\mathbf{y}) \propto \exp\left(-\sum_{j=1}^{b} g^{(j)}(\mathbf{x}) - f(\mathbf{x})
ight)$$

- \mathcal{D}_j indices of the *j*th block of data,
- f = prior on the regressor **x**
- inference via a Gibbs sampler distributed on b nodes
- the master node never sees the data set: privacy
- theoretical guarantees on the approximation

$$p_{\rho}(\mathbf{x}, \mathbf{z}_{1:b}) \propto \exp\left(-\sum_{j=1}^{b} \left[\frac{1}{2\rho^{2}} \|\mathbf{x} - \mathbf{z}_{j}\|^{2} + \sum_{i \in \mathcal{D}_{j}} \log\left(1 + \exp\left(-y_{i}\mathbf{a}_{i}^{T}\mathbf{z}_{j}\right)\right)\right] - f(\mathbf{x})\right)_{69/89}$$

Collab. P.-A. Thouvenin & A. Repetti (Edinburgh) Particular case : localized observation operators A

Thouvenin et al. (2022a,b), preprint arXiv

Collab. P.-A. Thouvenin & A. Repetti (Edinburgh) Particular case : localized observation operators A

Thouvenin et al. (2022a,b), preprint arXiv

Collab. P.-A. Thouvenin & A. Repetti (Edinburgh) Particular case : localized observation operators A

Thouvenin et al. (2022a,b), preprint arXiv

Fast distributed sampling: leveraging many CPUs Original image

71/89

Fast distributed sampling: leveraging many CPUs Blurred image + noise

Fast distributed sampling: leveraging many CPUs SGS restored image

Fast distributed sampling: leveraging many CPUs Dist. inference

Fast distributed sampling: leveraging many CPUs Original image

Fast distributed sampling: leveraging many CPUs Credibility intervals

Particular case : localized observation operators A

Collab. P.-A. Thouvenin & A. Repetti (Edinburgh)

- splitting the global variable of interest into blocks
- distributed block-coordinate SPA-Gibbs sampler

Method (cores)	SGS(1)	Dist.(1)	Dist.(2)	Dist.(16)
ms/sample	65.56	12.21	6.07	1.08
Accel. factor	0.19	1	2.01	11.30
Total time (s)	262.20	61.04	30.37	5.38
SNR (dB)	23.33	23.45	23.46	23.48

Related works

Distributed MCMC

Rendell et al. (2021); Plassier et al. (2021)

 M. Gonzalez et al.: Joint posterior MAP and posterior sampling with VAE prior González et al. (2022)

 M. Amrouche et al.: ELSA for partially collapsed Gibbs sampling (PCGS): asymptotically Exact Location Scale mixture Approximation for Bernoulli-D problems Amrouche et al. (2022)

theoretical guarantees

Durmus and Moulines (2017); Vono et al. (2022b); Laumont et al. (2022)

 L. Vargas, M. Pereyra et al.: Accelerated sampling using Runge-Kutta discretization of Langevin equation: SK-ROCK + SGS - Pereyra et al. (2020)

Related works

 L. Vargas, M. Pereyra et al., Accelerated sampling using Runge-Kutta discretization of Langevin stochastic equation ⇒ SK-ROCK + SGS

[courtesy Pereyra et al. (2020), inpainting problem]

Outline

- Inverse problems & Bayesian inference
- 2 The usual toolbox of inference
 - Optimization
 - The Bayesian approach
 - Unchained priors: Langevin algorithms
 - Applications
- 3 AXDA and the Split-Gibbs-Sampler
 - Asymptotically exact data augmentation: AXDA
 - Splitted Gibbs sampling (SGS)
 - SGS for inverse problems
 - Splitted & Augmented Gibbs sampling (SPA)
- Examples & illustrations
 - Bayesian image restoration under Poisson noise
 - High dimensions and distributed sampling
 - Related works
- 6 Capitalizing on machine learning
- 6 Conclusion

Capitalizing on machine learning

Various possible approaches

Deep learning

- strong expressivity
- very efficient for supervised learning
- large data set needed
- **• Direct inversion**: $\mathbf{y} \Rightarrow \mathbf{x}$
 - fully supervised setting
 - Dong et al. (2014); Gao et al. (2019); Schwartz et al. (2018)

Deep image prior

- choose an architecture for $\mathbf{x} = f_{\theta}(\mathbf{z})$, fix \mathbf{z} & optimize θ
- similar to sparsity assumptions (functional analysis)
- Ulyanov et al. (2018)

Learnt priors

- generative models: learn $\mathbf{x} = f_{\theta}(\mathbf{z})$; known $p(\mathbf{z}) \Rightarrow p(\mathbf{x})$
- $prox_{f_2} \simeq denoisers : Plug-and-Play (PnP) approaches$
- Venkatakrishnan et al. (2013); Zhang et al. (2021)

Capitalizing on machine learning PnP-ADMM

Replacing prox_{f2} by a trained MAP denoiser
 Recall (the zoo of prox):

$$\operatorname{prox}_{\lambda f_2}(\mathbf{x}) = \arg\min_{\mathbf{z}} \lambda f_2(\mathbf{z}) + \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2$$

Proximal operator = denoiser with prior $\propto \exp[-f_2(\mathbf{x})]$:

$$D_arepsilon^\dagger(\mathsf{x}) = rgmin_\mathsf{z} arepsilon f_2(\mathsf{z}) + rac{1}{2} \|\mathsf{x} - \mathsf{z}\|_2^2$$

▶ **PnP-ADMM** ← replace $\operatorname{prox}_{\lambda f_2}(\mathbf{x})$ by $D_{\varepsilon}^{\dagger}(\mathbf{x})$ ▶ Chan et al. (2016)

Rk: any denoiser may not correspond to some prox_{f_2} ; pb of theoretical guarantees...

Capitalizing on machine learning PnP & gradient descent: PnP-ULA

Using an MMSE denoiser & Tweedie's identity

 $D_{\varepsilon}^{*}(\mathbf{x}) = \mathbf{E}[\mathbf{x}|\mathbf{x}_{\varepsilon}]$ $p_{\varepsilon}(\mathbf{x}) = p * \mathcal{N}(\cdot; \mathbf{x}, \varepsilon) \Rightarrow \text{Tweedie's identity:}$ $-\nabla \log p_{\varepsilon}(\mathbf{x}) = \frac{1}{\varepsilon}[x - D_{\varepsilon}^{*}(\mathbf{x})]$

From MYULA

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \delta \nabla f_1(\mathbf{x}) + \delta \frac{1}{\lambda} [\operatorname{prox}_{\lambda f_2}(\mathbf{x}) - \mathbf{x}] + \sqrt{2\delta} \mathbf{w}^{(k+1)}$$

to PnP-ULA

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} \underbrace{-\delta \nabla f_1(\mathbf{x})}_{likelihood} + \delta \underbrace{\frac{1}{\varepsilon} [D_{\varepsilon}^*(\mathbf{x}) - \mathbf{x}]}_{prior} + \sqrt{2\delta} \mathbf{w}^{(k+1)}$$

Laumont et al. (2022)
PnP-SGS: using a deep denoiser as a prior in SGS

SGS uses Gibbs sampling from conditional posteriors

$$p(\mathbf{x} | \mathbf{y}, \mathbf{z}) \propto \exp\left[-f(\mathbf{y}, \mathbf{x}) - \frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z}\|_2^2\right]$$
(1)
$$p(\mathbf{z} | \mathbf{x}) \propto \exp\left[-g(\mathbf{z}) - \frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z}\|_2^2\right]$$
(2)

Capitalizing on machine learning

Plug-and-Play and splitting: PnP-SGS - F. Cœurdoux's PhD, N. Dobigeon - IRIT

PnP-SGS: using a deep denoiser as a prior in SGS

DDPM: Denoising Diffusion Probabilistic Models Learn backward SDE denoiser

$$egin{aligned} & p_{ heta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}
ight) = \mathcal{N}\left(\mathbf{x}_{t-1}; oldsymbol{\mu}_{oldsymbol{ heta}}\left(\mathbf{x}_{t}, t
ight), \Sigma_{oldsymbol{ heta}}\left(\mathbf{x}_{t}, t
ight)
ight) \ & \Rightarrow oldsymbol{
ho}\left(\mathbf{z} \mid \mathbf{x}
ight) \end{aligned}$$

Trained from forward SDE "noising"

$$q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) = \mathcal{N}\left(\mathbf{x}_{t}; \sqrt{1 - b(t)}\mathbf{x}_{t-1}, b(t)\mathbf{I}\right)$$

PnP-SGS: using a deep denoiser as a prior in SGS

Original image - noisy masked - PnP-ADMM - PnP-SGS - 90% cred. int.

PnP-SGS: using a deep denoiser as a prior in SGS

Quantitative evaluation (FID, LPIPS, PSNR, SSIM) of solutions: inpainting 1000 images FFHQ 256 × 256. **Best**, <u>Second</u>.

	$FID\downarrow$	$LPIPS\downarrow$	PSNR ↑	SSIM ↑
PnP-SGS	38.36	0.144	23.59	0.813
TV-SGS	71.12	0.785	21.09	0.524
PnP-ADMM	123.61	0.692	<u>22.41</u>	0.325
TV-ADMM	181.56	0.463	22.03	<u>0.784</u>
Score-SDE	76.54	0.612	13.52	0.437
DDRM	69.71	0.587	9.19	0.319
MCG	<u>39.26</u>	0.286	21.57	0.751

Capitalizing on machine learning

Plug-and-Play and splitting: PnP-SGS - F. Cœurdoux's PhD, N. Dobigeon - IRIT

PnP-SGS: using a deep denoiser as a prior in SGS

Runtime for each algorithm in Wall-clock time (computed with a single GTX 2080Ti GPU).

Method	Wall-clock time (s)	Ref.
Score-SDE	36.71	Song et al. (2022)
DDRM	2.03	Kawar et al. (2022)
MCG	80.10	Chung et al. (2023)
PnP-ADMM	3.63	Chan et al. (2016)
SGS-ULA	218.90	Vono et al. (2019b)
PnP-SGS	13.81	latest news

noisy masked image

PnP-SGS MMSE

original image

noisy masked image

PnP-SGS MMSE

original image

90% credibility intervals (PnP-SGS)

90

30

20

10

O

Related works: sampling using normalizing flows F. Cœurdoux's PhD, N. Dobigeon - IRIT

(Deep) Learning changes of variables (optimal transport)

Coeurdoux et al. (2023), preprint

Related works: sampling using normalizing flows F. Cœurdoux's PhD, N. Dobigeon - IRIT

(Deep) Learning changes of variables (optimal transport)

- \Rightarrow combining MALA and Normalizing Flows...
 - MALAFlow: sampling in the Gaussian latent space

Coeurdoux et al. (2023), preprint

Outline

- Inverse problems & Bayesian inference
- 2 The usual toolbox of inference
 - Optimization
 - The Bayesian approach
 - Unchained priors: Langevin algorithms
 - Applications
- 3 AXDA and the Split-Gibbs-Sampler
 - Asymptotically exact data augmentation: AXDA
 - Splitted Gibbs sampling (SGS)
 - SGS for inverse problems
 - Splitted & Augmented Gibbs sampling (SPA)
- Examples & illustrations
 - Bayesian image restoration under Poisson noise
 - High dimensions and distributed sampling
 - Related works
- 5 Capitalizing on machine learning
 - Conclusion

Efficient sampling for high dimensional problems

Nicolas Dobigeon, Maxime Vono, Pierre-Antoine Thouvenin

Pierre Palud, Audrey Repetti, Florentin Cœurdoux

Conclusion

Efficient sampling for inverse problems in high dimensions

- **SGS** & SPA split-and-augment strategy
 - Bayesian inference for complex models
 - large scale problems (big & tall)
 - confidence intervals

Efficient algorithms for inference: ULA, MALA, MYULA

- acceleration of state-of-the-art sampling algorithms
- distributed inference (privacy, distr. comput.)
- AXDA: unifying statistical framework
 - $\bullet\,$ asymptotically exact: control parameter ρ
 - non-asymptotic theoretical guarantees
- Capitalizing on ML: trained denoisers
 - learning from representative samples
 - theoretical guarantees under mild assumptions?

Applications & extensions

Distributed sampling: fast and scalable: SPMD

- localized operators
- distributed computing: coding
- confidence intervals

Generative models for inference: PnP-ULA & PnP-SGS

- learning sampling networks
- evaluating posterior distributions
- AXDA: unifying statistical framework
 - ELSA for PCGS: Mehdi Amrouche's PhD (J. Idier & H. Carfantan)
 - VAE prior + AXDA: Mario Gonzalez's PhD (A. Almansa, P. Muse)

Interested in AXDA for your statistical problems?

- Amrouche, M., Carfantan, H., and Idier, J. (2022), "Efficient Sampling of Bernoulli-Gaussian-Mixtures for Sparse Signal Restoration," IEEE Transactions on Signal Processing, 70, 5578–5591.
- Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011), "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers," *Foundations and Trends in Machine Learning*, 3, 1–122.
- Chan, S. H., Wang, X., and Elgendy, O. A. (2016), "Plug-and-play ADMM for image restoration: Fixed-point convergence and applications," *IEEE Transactions on Computational Imaging*, 3, 84–98.
- Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and Ye, J. C. (2023), "Diffusion Posterior Sampling for General Noisy Inverse Problems," in Proc. of Int. Conf. on Learning Representations.
- Coeurdoux, F., Dobigeon, N., and Chainais, P. (2023), "Learning Optimal Transport Between Two Empirical Distributions with Normalizing Flows," in *Machine Learning and Knowledge Discovery in Databases*, eds. Amini, M.-R., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., and Tsoumakas, G., Cham: Springer Nature Switzerland, pp. 275–290.
- Dong, C., Loy, C. C., He, K., and Tang, X. (2014), "Learning a deep convolutional network for image super-resolution," in Proc. of Eur. Conf. on Comp. Vis., Springer, pp. 184–199.
- Durmus, A. and Moulines, É. (2017), "Nonasymptotic convergence analysis for the unadjusted Langevin algorithm," The Annals of Applied Probability, 27, 1551 – 1587.
- Durmus, A., Moulines, E., and Pereyra, M. (2018a), "Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau," SIAM Journal on Imaging Sciences, 11, 473–506.
- (2018b), "Efficient Bayesian Computation by Proximal Markov chain Monte Carlo: When Langevin Meets Moreau," SIAM Journal on Imaging Sciences, 11, 473–506.
- Gao, H., Tao, X., Shen, X., and Jia, J. (2019), "Dynamic scene deblurring with parameter selective sharing and nested skip connections," in *Comput. Vision Pattern Recog.*, pp. 3848–3856.
- Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003), *Bayesian Data Analysis*, Chapman and Hall/CRC, 2nd ed.
- Geman, D. and Yang, C. (1995), "Nonlinear image recovery with half-quadratic regularization," IEEE Transactions on Image Processing, 4, 932–946.
- González, M., Almansa, A., and Tan, P. (2022), "Solving Inverse Problems by Joint Posterior Maximization with Autoencoding Prior," SIAM Journal on Imaging Sciences, 15, 822–859.
- Kawar, B., Elad, M., Ermon, S., and Song, J. (2022), "Denoising diffusion restoration models," arXiv preprint arXiv:2201.11793.

Laumont, R., Bortoli, V. D., Almansa, A., Delon, J., Durmus, A., and Pereyra, M. (2022), "Bayesian Imaging Using Plug & Play Priors: When Langevin Meets Tweedie," SIAM Journal on Imaging Sciences, 15, 701–737.

Neal, R. M. (2003), "Slice sampling," The Annals of Statistics, 31, 705-767.

- Papandreou, G. and Yuille, A. L. (2010), "Gaussian sampling by local perturbations," in Advances in Neural Information Processing Systems, pp. 1858–1866.
- Pereyra, M., Mieles, L. V., and Zygalakis, K. C. (2020), "Accelerating Proximal Markov Chain Monte Carlo by Using an Explicit Stabilized Method," SIAM Journal on Imaging Sciences, 13, 905–935.
- Pereyra, M., Schniter, P., Chouzenoux, E., Pesquet, J.-C., Tourneret, J.-Y., Hero, A., and McLaughlin, S. (2016), "A Survey of Stochastic Simulation and Optimization Methods in Signal Processing," *IEEE Journal of Selected Topics in Signal Processing*, 10, 224–241.
- Plassier, V., Vono, M., Durmus, A., and Moulines, E. (2021), "DG-LMC: a turn-key and scalable synchronous distributed MCMC algorithm via Langevin Monte Carlo within Gibbs," in *International Conference on Machine Learning (ICML)*.
- Polson, N. G., Scott, J. G., and Windle, J. (2013), "Bayesian Inference for Logistic Models Using Polya-Gamma Latent Variables," *Journal of the American Statistical Association*, 108, 1339–1349.
- Rendell, L. J., Johansen, A. M., Lee, A., and Whiteley, N. (2021), "Global consensus Monte Carlo," Journal of Computational and Graphical Statistics, 30.
- Robert, C. P. (2001), The Bayesian Choice: from decision-theoretic foundations to computational implementation, New York: Springer, 2nd ed.
- Robert, C. P. and Casella, G. (2004), Monte Carlo Statistical Methods, Berlin: Springer, 2nd ed.
- Scheffé, H. (1947), "A useful convergence theorem for probability distributions," The Annals of Mathematical Statistics, 18, 434–438.
- Schwartz, E., Giryes, R., and Bronstein, A. M. (2018), "DeepISP: Toward learning an end-to-end image processing pipeline," IEEE Trans. on Image Processing, 28, 912–923.
- Song, Y., Shen, L., Xing, L., and Ermon, S. (2022), "Solving Inverse Problems in Medical Imaging with Score-Based Generative Models," in Proc. of Int. Conf. on Learning Representations.
- Thouvenin, P., Repetti, A., and Chainais, P. (2022a), "A versatile distributed MCMC algorithm for large scale inverse problems," in 30th European Signal Processing Conference, EUSIPCO 2022, Belgrade, Serbia, August 29 - Sept. 2, 2022, IEEE, pp. 2016–2020.

- Thouvenin, P.-A., Repetti, A., and Chainais, P. (2022b), "A distributed Gibbs Sampler with Hypergraph Structure for High-Dimensional Inverse Problems," .
- Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2018), "Deep Image Prior," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- van Dyk, D. A. and Meng, X.-L. (2001), "The Art of Data Augmentation," Journal of Computational and Graphical Statistics, 10, 1–50.
- Venkatakrishnan, S. V., Bouman, C. A., and Wohlberg, B. (2013), "Plug-and-play priors for model based reconstruction," in 2013 IEEE Global Conference on Signal and Information Processing, IEEE, pp. 945–948.
- Vono, M., Dobigeon, N., and Chainais, P. (2019), "Bayesian Image Restoration under Poisson Noise and Log-concave Prior," in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1712–1716.
- Vono, M., Dobigeon, N., and Chainais, P. (2019a), "Split-and-augmented Gibbs sampler Application to large-scale inference problems," *IEEE Transactions on Signal Processing*, 67, 1648–1661.
- (2019b), "Split-and-augmented Gibbs sampler—Application to large-scale inference problems," IEEE Transactions on Signal Processing, 67, 1648–1661.
- (2022a), "High-Dimensional Gaussian Sampling: A Review and a Unifying Approach Based on a Stochastic Proximal Point Algorithm," SIAM Review, 64, 3–56.
- Vono, M., Paulin, D., and Doucet, A. (2022b), "Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting," Journal of Machine Learning Research, 23, 1–69.
- Zhang, K., Li, Y., Zuo, W., Zhang, L., Van Gool, L., and Timofte, R. (2021), "Plug-and-play image restoration with deep denoiser prior," IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 6360–6376.