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Motivations: inverse problems
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Motivations

y = A(x) + n

▶ solve complex ill-posed ML or inverse problems

▶ big data in high dimensions

▶ good performances

▶ fast inference algorithms

▶ credibility intervals

with maybe some additional options such as:

▶ privacy preserving

▶ distributed computing

Bayesian approach + MCMC method
(or even better?)
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Ill-posed vs well-posed inverse problems

Well-posed problem in the sense of Hadamard

Let X , Y be two Hilbert spaces. Consider an operator

A : X → Y
x 7→ A(x).

Consider the problem which consists in finding x such that
y = A(x). This problem is said to be well-posed in the sense of
Hadamard if

(i) the problem admits a solution (existence);

(ii) the problem admits a unique solution (unicity);

(iii) the solution is stable (A−1 is continuous): for any ε > 0,
there exists δ(ε) > 0 such that

(∀y1, y2 ∈ Y), ∥y1 − y2∥ ≤ δ(ε) ⇒ ∥x1 − x2∥ ≤ ε

where xi is a solution to the problem yi = A(xi ), i ∈ {1, 2}.
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Example 1: radio-astronomy - Orion-B

Astrophysics: no ground truth
▶ observations y: radio spectrums w.r.t. chemical composition
▶ unknowns x: physical parameters,

⇒ to understand the birth of stars

Confidence intervals are crucial to acertain predictions

Pierre Palud’s PhD with the Orion-B consortium
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Example 2: estimating the R0 of Covid-19

Covid-19: no ground truth
▶ observations y: detected contaminations every day
▶ unknowns x: true # of contaminations & R parameter

⇒ to make decisions

Confidence intervals are crucial to acertain predictions
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Fig. 1. Reproduction number estimations for the entire pandemic
period, for four different countries. Top: Raw (Z, black) and de-
noised (Ẑ(D), red) daily new infection counts. Bottom: estimates for R,
R̂(0)(black), R̂(1)(blue), R̂(2)(red), R̂(3)(cyan).

Fig. 2. Credibility interval estimation for the reproduction number
estimations for the 35 last days and four different countries. Top: Raw
(Z, black) and denoised (Ẑ(D), red) daily new infection counts. Middle: a
posteriori median (50%-quantile) estimate for R. Bottom: 95%-credibility
interval estimate for R, reported as the plots of the 97.5% and 2.5%-
quantiles, after subtraction of the 50%-quantile.

The credibility intervals are extremely narrow (around a few
%) around the median, and relatively homogeneous along
time, yet with mild increase around the piecewise linearity
change points.

V. CONCLUSIONS AND PERPECTIVES

These results show that both the inverse problem for-
mulations and the Metropolis Adjusted Proximal-Gradient
sampler proposed here yields extremely realistic estimates
for the time evolution of R, that are hence actually usable
by epidemiologists. Notably, these estimation tools have a
double potential value: Retrospectively, they permit to quan-
tify the impacts of given sanitary measures on the pandemic
evolution ; Prospectively, the piecewise linear nature of the
estimation of R permits the short term forecast (the nowcast)
of the evolution of the pandemic intensity. Further, sampling
strategies for Credibility Interval joint estimation for both
the reproduction number R and the Outliers O are being
devised and compared, with several formulations of convex
nonsmooth compliant Proposition steps (cf. [10]).

Finally, these estimation tools are being made publicly
available in a document toolbox, as a contribution to open
science and dedication of science to major societal stakes.
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Bayesian inference1

y: available data = observations

x: unknown object of interest

Prior × Likelihood −→ Posterior

x ∼ π(x) y|x ∼ π(y|x) x|y ∼ π(x|y)

1Robert (2001), Gelman et al. (2003)
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Bayesian inference

y: available data = observations

x: unknown object of interest

E(q|y)x | y Cα

1− α

Bayesian estimators Credibility regions Cα

argmin
x̂

∫
L(x, x̂)π(x|y)dx

∫
Cα
π(x|y)dx = 1− α



10/89

Outline

1 Inverse problems & Bayesian inference

2 The usual toolbox of inference
Optimization
The Bayesian approach
Unchained priors: Langevin algorithms
Applications

3 AXDA and the Split-Gibbs-Sampler
Asymptotically exact data augmentation: AXDA
Splitted Gibbs sampling (SGS)
SGS for inverse problems
Splitted & Augmented Gibbs sampling (SPA)

4 Examples & illustrations
Bayesian image restoration under Poisson noise
High dimensions and distributed sampling
Related works

5 Capitalizing on machine learning

6 Conclusion



11/89

The usual toolbox of inference

▶ Optimization:
problem ⇒ loss function

efficient algorithms

theoretical guarantees

interpretability / functional analysis

▶ Bayesian approaches:
probabilitic models

uncertainty quantification

▶ Machine learning (deep):

adaptive ⇒ relevant

outstanding performance

toward the best of all worlds?
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The optimization-based approach

Inverse problem ⇒ cost function

y = A(x) + n

⇓

f (x) = f1(x|y) + f2(x)

y = Ax+ nGauss

⇓

f (x) =
1

2σ2
∥y − Ax∥22 + f2(x)

⇒ x̂ = argminx f (x)

where f is typically

▶ convex (or not): easy optim., unique solution,

▶ a sum of various penalties: functional analysis,

▶ differentiable (or not) ⇒ gradient descent (or prox)
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The optimization-based approach

x̂ = argmin
x

f1(x|y) + f2(x)

If not differentiable: proximal operators and splitting

argmin
x

f1(x|y) + f2(z) such that x = z

maybe relaxed to (ADMM)

argmin
x,z,u

f1(x|y) + f2(z) +
α

2
∥x− z∥22 + uT (x− z)

proxf2(x) = argmin
z

f2(z) +
1

2
∥x− z∥22

=⇒ zoo of prox op.
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The Bayesian approach

Inverse problems & Bayes posterior ∝ likelihood(f 1) × prior(f 2)

⇒ define a posterior distribution p(x|y) ∝ p1(y|x) ·p2(x)

where p2 is typically

▶ priors: statistical properties

▶ conjugate ⇒ easy sampling/inference

▶ log-concave (or not) ↔ f2 convex

Solution:

▶ explicit computations in nice conjugate models

▶ sampling methods and MCMC, e.g. Gibbs sampling

xi ∼ p(xi |x\i ) ∀1 ≤ i ≤ d
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The Bayesian approach
Conjugate models: the exponential family

Inverse problems & Bayes posterior ∝ likelihood(f 1) × prior(f 2)

⇒ define a posterior distribution p(x|y) ∝ p1(y|x) ·p2(x)

▶ The exponential family (likelihood)

p1(y|x) = h1(y)g(x)exp
[
xTu(y)

]
▶ Conjugate prior (existence of non-informative priors as well...)

p2(x|α, β) = h2(α, β)g(x)
βexp

[
βxTα

]
▶ Posterior distribution knowing N i.i.d. observations yn

p(x|Y) ∝ g(x)β+N exp

[
xT

(∑
n

u(yn) + βα

)]
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The Bayesian approach
Non conjugate models: sampling and Monte Carlo methods1∫

h(x)π(x|y)dx ≈ 1

N

N∑
n=1

h
(
x(n)
)
, x(n) ∼ π(x|y)

e.g. x̂MMSE = ÎE[x|y] = 1

N

N∑
n=1

x(n)

Sampling challenges: − log π(x|y) =
b∑

i=1

fi (x)

▶ {fi ; i ∈ [b]}: non-conjugate,
non-smooth...

▶ x ∈ Rd with d ≫ 1

1Robert and Casella (2004)
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The Bayesian approach: using unchained priors
Non conjugate models: sampling and Monte Carlo methods2

Inverse problems & Bayes posterior ∝ likelihood(f 1) × prior(f 2)

⇒ define a posterior distribution p(x|y) = p1(x|y) ·p2(x)

If ”complex properties”... difficult sampling!

▶ non-conjugate priors: from optimization, learning,...

▶ rich models: sophisticated prior distributions

▶ big datasets: expensive computations

▶ f2 = − log p2 not differentiable

2Robert and Casella (2004)
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Discretized Langevin process: ULA

Langevin stochastic differential equation:

dx(t) = ∇ log p(x(t)|y) +
√
2 dw(t),

where w(t) is a d-dimensional Brownian motion.

Unadjusted Langevin Algorithm: Euler-Maruyama scheme (ULA)

x(k+1) = x(k) + δ∇ log p(x(k)|y) +
√
2δ w(k+1),

w(k+1) ∼ N (0, Id)

⇒ x(k+1) = x(k) + δ∇ log p(y|x(k)|y)︸ ︷︷ ︸
−f1(x)

+ δ∇ log p(x(k))︸ ︷︷ ︸
−f2(x)

+
√
2δ w(k+1)

▶ discretized Langevin process =⇒ Monte Carlo Markov Chain
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Metropolis Adjusted Langevin Algorithm: MALA

Unadjusted Langevin Algorithm: Euler-Maruyama scheme = ULA

x(k+1) = x(k) + δ∇ log p(x(k)|y) +
√
2δ w(k+1),

w(k+1) ∼ N (0, Id)

=⇒ approximation: accuracy vs convergence speed

=⇒ correction by Metropolis-Hastings acceptation step: MALA

Durmus and Moulines (2017)

Rk: SK-ROCK = Runge-Kutta 4 discretization scheme
is much better than Euler-Maruyama
Pereyra et al. (2020)



20/89

MYULA: bridging sampling to optimization

▶ ULA: Unadjusted Langevin Algorithm

x(k+1) = x(k) + δ∇ log p(y|x(k))︸ ︷︷ ︸
−f1(x)

+ δ∇ log p(x(k))︸ ︷︷ ︸
−f2(x)

+
√
2δ w(k+1)

w(k+1) ∼ N (0, Id)

=⇒ x(k+1) = x(k) − δ∇f1(x)− δ∇f2(x) +
√
2δ w(k+1)

but f2 = − log p2 not differentiable: ∇f2(x) =⇒ x− proxλf2(x)
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MYULA: bridging sampling to optimization

▶ MYULA: Moreau-Yosida Unadjusted Langevin Algorithm.

Idea: replace f2(x) by its Moreau envelope

f
(λ)
2 (x) = inf

u∈Rd
f2(u) +

1

2λ
∥u− x∥22

=⇒ ∇ log pλ is Lipshitz continuous: ∇f2
(λ)(x) = 1

λ [x− proxλf2(x)]

x(k+1) = x(k) − δ∇f1(x)︸ ︷︷ ︸
likelihood

+ δ
1

λ
[proxλf2(x)− x]︸ ︷︷ ︸

prior

+
√
2δ w(k+1)

Pereyra et al. (2016); Durmus and Moulines (2017); Durmus et al. (2018a) =
good approx. when λ→ 0
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Example: radio-astronomy - Orion-B

collab. Obs. of Paris : P. Palud (PhD), F. Le Petit, E. Bron, P.-A. Thouvenin

Astrophysics: no ground truth
▶ observations y: radio spectrums w.r.t. chemical composition
▶ unknowns θ: physical parameters,

⇒ to understand the birth of stars

Confidence intervals are crucial to acertain predictions

Orion-B consortium
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Example: radio-astronomy - Orion-B
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Example: radio-astronomy - Orion-B
Mixture of noises and sampling non-log-concave posterior distributions

collab. Obs. of Paris : P. Palud (PhD), F. Le Petit, E. Bron, P.-A. Thouvenin

N pixels, L wavelengths, no groundtruth

yn,ℓ = max
{
ω, ϵ

(m)
n,ℓ fn,ℓ(Θ) + ϵ

(a)
n,ℓ

}
θn ∈ Rd parameters to infer on pixel n

f black-box, spans multiple decades

ϵ
(a)
n,ℓ ∼ N (0, σ2a) instruments noise

ϵ
(m)
n,ℓ ∼ logN (0, σ2m) calibration error

ω > 0 instrument detectability limit

How to deal with black-box and non linear forward map f ?

mixture of additive and multiplicative noises?



23/89

Example: radio-astronomy - Orion-B
Mixture of noises and sampling non-log-concave posterior distributions

collab. Obs. of Paris : P. Palud (PhD), F. Le Petit, E. Bron, P.-A. Thouvenin

N pixels, L wavelengths, no groundtruth

yn,ℓ = max
{
ω, ϵ

(m)
n,ℓ fn,ℓ(Θ) + ϵ

(a)
n,ℓ

}
θn ∈ Rd parameters to infer on pixel n

f black-box, spans multiple decades

ϵ
(a)
n,ℓ ∼ N (0, σ2a) instruments noise

ϵ
(m)
n,ℓ ∼ logN (0, σ2m) calibration error

ω > 0 instrument detectability limit

How to deal with black-box and non linear forward map f ?

mixture of additive and multiplicative noises?



23/89

Example: radio-astronomy - Orion-B
Mixture of noises and sampling non-log-concave posterior distributions

collab. Obs. of Paris : P. Palud (PhD), F. Le Petit, E. Bron, P.-A. Thouvenin

N pixels, L wavelengths, no groundtruth

yn,ℓ = max
{
ω, ϵ

(m)
n,ℓ fn,ℓ(Θ) + ϵ

(a)
n,ℓ

}
θn ∈ Rd parameters to infer on pixel n

f black-box, spans multiple decades

ϵ
(a)
n,ℓ ∼ N (0, σ2a) instruments noise

ϵ
(m)
n,ℓ ∼ logN (0, σ2m) calibration error

ω > 0 instrument detectability limit

How to deal with black-box and non linear forward map f ?

mixture of additive and multiplicative noises?



24/89

A priori & regularization

a priori information on Θ ∈ RN×D combines 2 priors:

▶ spatial regularization, e.g.,
smoothed Total Variation (TV is not diff. ⇒ MYULA)

L2-norm of image gradient
L2-norm of image Laplacian
L2-norm of image wavelet decomposition

▶ validity domain for each physical parameter θn,d
=⇒ BUT non-smooth
=⇒ smooth penalty function when θn,d is out of validity
domain:
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Example: radio-astronomy - Orion-B
Proposed sampler: mixing 2 kernels

▶ Forward model covers multiple decades

→ Preconditioned-MALA kernel with RMSProp

Role: Efficient local exploration
Limitation: restricted to smooth log-posteriors

▶ Non-log-concave posterior

→ Multiple-Try Metropolis (MTM) kernel

Role: jumps between modes
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Illustration: 2D Gaussian mixture model - MALA steps
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Illustration: 2D Gaussian mixture model - MALA steps
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Illustration: 2D Gaussian mixture model - MALA steps
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Illustration: 2D Gaussian mixture model - MTM steps
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Illustration: 2D Gaussian mixture model - MTM steps
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Illustration: 2D Gaussian mixture model - MALA + MTM
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Application to a synthetic dataset
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The Bayesian approach augmented by splitting

Exploit the synergy: Monte Carlo sampling / optimization

Seminal works : HMC, (MY)ULA

▶ efficient & simple sampling

▶ in high dimension

▶ in distributed architectures

0 5000 10000 15000

Iteration t

�3

�2

�1

0

1

2

3

✓

N (0, 1)

Random walk with � = 1

Recall: proxλf2(x) = argminz λf2(z) +
1
2∥x− z∥22 ⇒ zoo of prox
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The Bayesian approach augmented by splitting: AXDA

Inverse problems & Bayes posterior ∝ likelihood(f 1) × prior(f 2)

⇒ define a posterior distribution p(x|y) = p1(x|y) ·p2(x)
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The Bayesian approach augmented by splitting: AXDA

Inverse problems & Bayes posterior ∝ likelihood(f 1) × prior(f 2)

⇒ define a posterior distribution p(x|y) = p1(x|y) ·p2(x)

”complex properties” =⇒ difficult sampling

Strategy: Divide-to-Conquer + efficient sampling

=⇒ splitting (SP) and augmentation (SPA)

Approximate the true posterior: Asymp. eXact Data Augment.

π(x) ∝ exp [−f1(x)− f2(x)]
⇓

πρ(x, z,u) ∝ exp
[
−f1(x)− f2(z)− 1

2ρ2
∥u− x+ z∥22 − 1

2α2 ∥u∥2
]

Recall: proxλf2(x) = argminz λf2(z) +
1
2
∥x− z∥22
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Asymptotically exact data augmentation (AXDA)
Motivations

Let π ∈ L1 a target probability distribution with density with
respect to (w.r.t.) the Lebesgue measure

π(x) ∝ exp(−f (x))

where f : X ⊆ Rd → (−∞,+∞] stands for a potential function.

With a slight abuse of notations, π shall refer to

▶ a prior π(x),

▶ a likelihood π(x) ≜ π(y|x),
▶ a posterior π(x) ≜ π(x|y),

where y are observations.
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Asymptotically exact data augmentation (AXDA)
Motivations

Let π ∈ L1 a target probability distribution with density with
respect to (w.r.t.) the Lebesgue measure

π(x) ∝ exp(−f (x))

where f : X ⊆ Rd → (−∞,+∞] stands for a potential function.

Assumption 1

Inference from π is difficult and possibly inefficient.

Examples:

▶ non-trivial maximum likelihood estimation

▶ difficult posterior sampling with poor mixing chains
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Data augmentation (DA)

Idea: introduce auxiliary variables z such that∫
Z
π(x, z)dz = π(x).

Numerous well-known advantages:

▶ augmented likelihood π(x, z) ≜ π(y, z|x) easier to work with

▶ joint posterior π(x, z) ≜ π(x, z|y) with simpler conditionals

▶ improved inference (multimodal problems, mixing properties)
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The art of exact data augmentation: XDA

Unfortunately, satisfying∫
Z
π(x, z)dz = π(x) (XDA)

is a matter of art (van Dyk and Meng 2001).

Difficulties:

▶ finding π(x, z) (Geman and Yang 1995)

▶ scaling in high-dimensional/big data settings
(Neal 2003; Polson et al. 2013).

Idea: relax (XDA) while keeping XDA’s advantages

How to build πρ(x, z) such that
∫
πρ(x, z)dz −−−→

ρ→0
π(x) ?
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Asymptotically exact data augmentation (AXDA)

Let consider an augmented density pρ(x, z) and define

πρ(x) =

∫
Z
pρ(x, z)dz,

where ρ > 0.

Assumption 2

For all x ∈ X , limρ→0 πρ(x) = π(x).

Theorem 1 (Scheffé 1947)

Under Assumption 2,

∥πρ − π∥TV −−−→
ρ→0

0.
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Choice of the augmented density

Take inspiration from variable splitting in optimization
(Boyd et al. 2011)...

This motivates the choice (Vono et al. 2019a)

pρ(x, z) ∝ exp(−f (z)− ϕρ(x, z))

▶ simplify the inference (Vono et al. 2019a)

▶ distribute the inference (Rendell et al. 2021)

▶ accelerate the inference (Vono et al. 2019a).
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Splitted Gibbs sampling (SGS)

π(x) ∝ exp [−f1(x)− f2(x)]

⇓

π(x, z|x = z) ∝ exp [−f1(x)− f2(z)] knowing that x = z

⇓

πρ(x, z) ∝ exp

[
−f1(x)− f2(z)−

1

2ρ2
∥x− z∥22

]
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Splitted Gibbs sampling (SGS)

π(x) ∝ exp [−f1(x)− f2(x)]

⇓

πρ(x, z) ∝ exp [−f1(x)− f2(z)− ϕρ(x, z)]

θx

x

y

f2

f1

θzz

ρx

y

f2

ϕρ

f1
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Splitted Gibbs sampling (SP): Theorem

Consider the marginal of x under πρ:

pρ(x) =

∫
Rd

πρ(x, z)dz ∝
∫
Rd

exp [−f1(x)− f2(z)− ϕρ(x, z)]dz .

Theorem

Assume that in the limiting case ρ→ 0, ϕρ is such that

exp (−ϕρ(x, z))∫
Rd exp (−ϕρ(x, z))dx

−−−→
ρ→0

δx(z)

Then pρ coincides with π when ρ→ 0, that is

∥pρ − π∥TV −−−→
ρ→0

0

+ non asymptotic convergence bounds when ϕρ = Gaussian
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Non-asymptotic guarantees for Gaussian smoothing

πρ(x|y) ∝
b∏

i=1

∫
Rdi

e−fi (zi )︸ ︷︷ ︸
πi (zi )

N
(
zi |Aix, ρ

2Id
)︸ ︷︷ ︸

ϕρ(zi ,Aix)

dzi

Distance Upper bound Main assumptions

∥πρ − π∥TV

ρ

b∑
i=1

2
√
diLi + o(ρ) fi Li -Lipschitz

1

2
ρ2M1d f1 M1-smooth, b = 1

1

2
ρ2

b∑
i=1

Midi + o(ρ2) fi Mi -smooth & strongly convex

W1(πρ, π) min(ρ
√
d , 12ρ

2
√
M1d) f1 M1-smooth, strongly convex
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Splitted Gibbs sampling (SP): conditional distributions

Full conditional distributions under the split distribution πρ:

πρ(x|z) ∝ exp (−f1(x)− ϕρ(x, z))

πρ(z|x) ∝ exp (−f2(z)− ϕρ(x, z)) .

Note that f1 and f2 are now separated in 2 distinct distributions

State of the art sampling methods:

▶ Gaussian variables: Fourier or Aux-V1 or E-PO

▶ MYULA = proximal MCMC,

▶ ...
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Splitted Gibbs sampling (SP): conditional distributions

Full conditional distributions under the split distribution πρ:

πρ(x|z) ∝ exp

(
−f1(x)−

1

2ρ2
∥x− z∥22

)

πρ(z|x) ∝ exp

(
−f2(z)−

1

2ρ2
∥x− z∥22

)
.

Note that f1 and f2 are now separated in 2 distinct distributions

State of the art sampling methods:

▶ Gaussian variables: Fourier or Aux-V1 or E-PO

▶ MYULA = proximal MCMC,

▶ ...
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Partial conclusion
Efficient sampling for inverse problems in high dimensions

▶ Inverse problems and Bayesian inference
optimization
the usual Bayesian toolbox
focus on Langevin sampling: ULA, MALA, MYULA

▶ SGS & SPA split-and-augment strategy
Bayesian inference for complex models

large scale problems (big & tall)

confidence intervals

▶ Efficient algorithms for inference:

acceleration of state-of-the-art sampling algorithms

distributed inference (privacy, distr. comput.)

▶ AXDA: unifying statistical framework

asymptotically exact: control parameter ρ

non-asymptotic theoretical guarantees
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Coming next: applications & extensions

▶ Distributed sampling: fast and scalable: SPMD

localized operators

distributed computing: coding

confidence intervals

▶ unifying statistical framework: AXDA

ELSA for PCGS: Mehdi Amrouche’s PhD (J. Idier & H.
Carfantan)

VAE prior + AXDA: Mario Gonzalez’s PhD (A. Almansa, P.
Muse)

▶ Generative models for inference: PnP-ULA & PnP-SGS

learning sampling networks

evaluating posterior distributions
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Splitted Gibbs sampling (SP/SGS): inverse problems
Linear Gaussian inverse problems

y = Ax+ n,

where A = damaging operator and n ∼ N
(
0d , σ

2Id
)
= noise. f1(x) =

1

2σ2
∥y − Ax∥22 ∀x ∈ Rd ,

f2(x) = τψ(x), τ > 0.

Then the SP conditional distributions are:

πρ(x|z) = N
(
µx,Qx

−1
)

πρ(z|x) ∝ exp

(
−τψ(z)− 1

2ρ2
∥z− x∥22

)
,



45/89

Splitted Gibbs sampling (SP/SGS): efficient sampling
Linear Gaussian inverse problems

πρ(x|z) = N
(
µx,Qx

−1
)

πρ(z|x) ∝ exp

(
−τψ(z)− 1

2ρ2
∥z− x∥22

)
,

Examples:

▶ Tikhonov regularization
ψ(z) = ∥Qz∥22 ⇒ Gaussian variables

(e.g. P or Q diagonalizable in Fourier→ E-PO)

▶ Convex non-smooth
ψ = TV, ℓ1 sparsity... ⇒ proximal MCMC
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Splitted Gibbs sampling (SP/SGS): TV deblurring
Linear Gaussian inverse problems

Posterior distribution

p (x|y) ∝ exp

[
− 1

2σ2
∥y − Ax∥22 − βTV(x)

]
where P = damaging operator (blur, binary mask...) and

TV(x) =
∑

1≤i ,j≤N

∥∥∥(∇x)i ,j

∥∥∥
2

Direct sampling is challenging

1 generally high dimension of the image,

2 non-conjugacy of the TV-based prior,

3 non-differentiability of g (̸= Hamiltonian Monte Carlo
algorithms)
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Splitted Gibbs sampling (SP/SGS): TV deblurring
Linear Gaussian inverse problems
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Splitted Gibbs sampling (SP/SGS): TV deblurring
Linear Gaussian inverse problems
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Splitted Gibbs sampling (SP): TV deblurring
Linear Gaussian inverse problems + 90% credibility intervals
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Splitted Gibbs sampling (SP/SGS): TV deblurring
Linear Gaussian inverse problems

SALSA FISTA SGS P-MYULA

time (s) 1 10 470 3600

time (× var. split.) 1 10 1 7.7

nb. iterations 22 214 ∼ 104 105

SNR (dB) 17.87 17.86 18.36 17.97

Rk : ρ2 = 9
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Splitted Gibbs sampling (SP): TV deblurring
Linear Gaussian inverse problems

Short auto-correlation of the Markov chain
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Splitted Gibbs sampling (SP): TV deblurring
Linear Gaussian inverse problems

ρ = comput. time/quality trade-off

100 101 102 103 104

Iteration t
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f
(x

)
+
g
(x

)

MYULA

10−1

100
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Splitted & Augmented Gibbs sampling (SPA) (optional)

Motivation for augmentation:

better mixing properties of the Markov chain

πρ,α ≜ p(x, z,u; ρ, α)

∝ exp [−f (x)− g(z)]

× exp [−ϕ1(x, z− u; ρ)− ϕ2(u;α)]

Assumption 2
ϕ2 and ϕ1 are such that ∀x, z ∈ Rd ,∫

Rd

exp [−ϕ1(x, z− u; ρ)− ϕ2(u;α)]du

∝ exp [−ϕ1(x, z; η(ρ, α))] .
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Splitted & Augmented Gibbs sampling (SPA)
SPA Gibbs sampler

The conditional split-augmented distributions are:

p(x|z,u; ρ) ∝ exp

[
−f (x)− 1

2ρ2
∥x− z+ u∥22

]
p(z|x,u; ρ) ∝ exp

[
−g(z)− 1

2ρ2
∥x− z+ u∥22

]
p(u|x, z; ρ, α) ∝ exp

[
−∥u∥22

2α2
− 1

2ρ2
∥x− z+ u∥22

]
.
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AXDA : comparing SPA & ADMM
Connection between MAP and ADMM

By replacing Gibbs sampling steps by optimizations, ADMM
appears:

x(t) ∈ argminx− log p
(
x|z(t−1),u(t−1); ρ

)
z(t) ∈ argminz− log p

(
z|x(t),u(t−1); ρ

)
u(t) = u(t−1) + x(t) − z(t)
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Outline

1 Inverse problems & Bayesian inference

2 The usual toolbox of inference
Optimization
The Bayesian approach
Unchained priors: Langevin algorithms
Applications

3 AXDA and the Split-Gibbs-Sampler
Asymptotically exact data augmentation: AXDA
Splitted Gibbs sampling (SGS)
SGS for inverse problems
Splitted & Augmented Gibbs sampling (SPA)

4 Examples & illustrations
Bayesian image restoration under Poisson noise
High dimensions and distributed sampling
Related works

5 Capitalizing on machine learning

6 Conclusion
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Splitted & Augmented Gibbs sampling (SGS) in action
Applications

Many problems can be considered using AXDA/SPA:

▶ Laplacian + ℓ2 regularizer for deconvolution

M. Vono et al., “Split-and-augmented Gibbs sampler - Application to large-scale

inference problems,” in IEEE Trans. Signal Processing, 2019

▶ Poisson noise + blur + non-negativity + ...

M. Vono et al., “Bayesian image restoration under Poisson noise and

log-concave prior,” in Proc. ICASSP 2019

▶ Machine learning: logistic regression,...

M. Vono et al. (2018), “Sparse Bayesian binary logistic regression using the

split-and-augmented Gibbs sampler,” in Proc. IEEE MLSP 2018
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Bayesian image restoration under Poisson noise

noisy
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estimate

+

credibility intervals
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Vono et al. (2019)
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Take-home message

▶ Motivations
Posterior distr. of estimators → Bayesian + MCMC

Quantify uncertainty

▶ Challenges
Poisson likelihood and distributed data

Sophisticated prior → difficult sampling

▶ Contributions
Variable splitting for MCMC (akin to the ADMM)

Fast, general MCMC strategy

State-of-the-art performance
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Problem statement

Model: ∀n ∈ J1,NK,

yn ∼ Poisson([Ax]n), A = blurring operator.

Neg. log likelihood:

N∑
n=1

−yn log ([Ax]n) + [Ax]n.

Prior:

▶ x ⪰ 0d
▶ Total variation, ℓ1, . . .

Solution: splitting!
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General problem formulation

Let π ∈ L1 be the target posterior with neg. log density

− log π(x) =
N∑

n=1

fn(Anx)︸ ︷︷ ︸
neg. log likelihood

+
K∑

k=1

gk(Gkx)︸ ︷︷ ︸
neg. log prior

.

▶ An: blur, binary mask, . . ..

▶ fn: Poisson neg. log likelihood.

▶ Gk : transform, dictionary, . . .

▶ gk : ℓ1 norm, TV regularization, ιRd
+
, . . .
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General problem formulation

Let π ∈ L1 be the target posterior with neg. log density

− log π(x) =
N∑

n=1

fn(Anx)︸ ︷︷ ︸
neg. log likelihood

+
K∑

k=1

gk(Gkx)︸ ︷︷ ︸
neg. log prior

.

Issues:

▶ fn continuously differentiable but not grad. Lipschitz

▶ large N + distributed data

▶ non-conjugate + non-smooth + multi-potential prior.
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Variable splitting and the ADMM

Take inspiration from the ADMM and its variable-splitting
formulation.

Reminder:
min
x

f1(A1x) + g1(G1x)

becomes
min
x,z1,u1

f1(u1) + g1(z1)

such that
u1 = A1x and z1 = G1x
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Variable splitting for sampling

Neg. log. posterior (cost function):

− log π(x) =
N∑

n=1

fn(Anx)︸ ︷︷ ︸
neg. log likelihood

+
K∑

k=1

gk(Gkx)︸ ︷︷ ︸
neg. log prior

.

Variable splitting → joint distribution pρ(x, z1:K ,u1:N) such that

− log pρ(x, z1:K ,u1:N) =
N∑

n=1

fn(un)︸ ︷︷ ︸
split likelihood

+
K∑

k=1

gk(zk)︸ ︷︷ ︸
split prior

+
N∑

n=1

1

2ρ2
∥un − Anx∥2 +

K∑
k=1

1

2ρ2
∥zk − Gkx∥2 .
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Split Gibbs sampler (SGS)

Sample from pρ(x, z1:K ,u1:N) with a simple, efficient and
theoretically sound Gibbs sampler:

pρ(un|x) ∝ exp

(
−fn(un)−

1

2ρ2
∥un − Anx∥2

)

pρ(zk |x) ∝ exp

(
−gk(zk)−

1

2ρ2
∥zk − Gkx∥2

)
pρ(x|z1:K ,u1:N) : d-dimensional Gaussian.

Sampling: P-MYULA (Durmus et al. 2018b) for auxiliary un, zk
E-PO (Papandreou and Yuille 2010) for Gaussian x.
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Highlight

High-dimensional Gaussian sampling:
a review and a unifying approach based on
a stochastic proximal point algorithm

M. Vono, N. Dobigeon and P. C.

SIAM Review, vol. 64, no. 1, pp. 3-56, 2022

Vono et al. (2022a)
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Experimental design

Model: ∀n ∈ J1,NK, yn ∼ Poisson([Ax]n), A: blurring operator.

Prior: g1 = ιRd
+
,

g2: τℓ1 or τTV, τ > 0.

Images: 3 standard images with different intensity levels M.
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Results

original noisy estimate credibility intervals
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Results

norm. MAE = mean absolute error / M.

norm. MAE

image approach M τ PIDAL P-MYULA SGS

Saturn TV 300 0.1 0.01 0.01 0.01

neuron TV
30 1 0.03 0.03 0.05

100 1 0.03 0.03 0.03

cameraman WT

30 0.1 0.08 0.07 0.10

100 0.1 0.07 0.06 0.07

255 0.1 0.07 0.06 0.06

State-of-the-art performance with controlled approximations.

Speed: SGS is 7 times faster than state-of-the-art MCMC,

only ∼ 40-100 times slower than ADMM.
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Results

original noisy estimate credibility intervals
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Bayesian image restoration under Poisson noise using SGS
Conclusion

▶ efficient & simple MCMC splitting strategy

divide-and-conquer
embeds & accelerate state-of-the-art algorithms
yields comprehensive and excellent results.

▶ based on the AXDA unifying statistical framework

mixture-based models
robust Bayesian models
variable splitting-based models

▶ non-asymptotic theoretical guarantees on the approximation
under mild assumptions + explicit convergence rates.
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Distributed sampling and data privacy
Regularized logistic regression by applying AXDA b times

∀ i ∈ J1, nK, yi ∼ Bernoulli
(
σ(ai

Tx)
)

π(x|y) ∝ exp

−
b∑

j=1

g (j)(x)− f (x)


▶ g (j)(x) =

∑
i∈Dj

log
(
1 + exp

(
−yiai

Tx
))
,

▶ Dj indices of the jth block of data,
▶ f = prior on the regressor x

▶ inference via a Gibbs sampler distributed on b nodes
▶ the master node never sees the data set: privacy
▶ theoretical guarantees on the approximation

pρ(x, z1:b) ∝ exp

−
b∑

j=1

 1

2ρ2
∥x− zj∥2 +

∑
i∈Dj

log
(
1 + exp

(
−yia

T
i zj

))− f (x)
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Fast distributed sampling: leveraging many CPUs

Collab. P.-A. Thouvenin & A. Repetti (Edinburgh)
Particular case : localized observation operators A

Thouvenin et al. (2022a,b), preprint arXiv

https://arxiv.org/abs/2210.02341
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Fast distributed sampling: leveraging many CPUs
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Fast distributed sampling: leveraging many CPUs

Blurred image + noise
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Fast distributed sampling: leveraging many CPUs

SGS restored image
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Fast distributed sampling: leveraging many CPUs

Dist. inference

5

10

15

20

25

30



71/89

Fast distributed sampling: leveraging many CPUs
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Fast distributed sampling: leveraging many CPUs

Credibility intervals
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Fast distributed sampling: leveraging many CPUs

Particular case : localized observation operators A

Collab. P.-A. Thouvenin & A. Repetti (Edinburgh)

▶ splitting the global variable of interest into blocks

▶ distributed block-coordinate SPA-Gibbs sampler

Method (cores) SGS(1) Dist.(1) Dist.(2) Dist.(16)

ms/sample 65.56 12.21 6.07 1.08
Accel. factor 0.19 1 2.01 11.30
Total time (s) 262.20 61.04 30.37 5.38
SNR (dB) 23.33 23.45 23.46 23.48
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Related works

▶ Distributed MCMC
Rendell et al. (2021); Plassier et al. (2021)

▶ M. Gonzalez et al.: Joint posterior MAP and posterior
sampling with VAE prior
González et al. (2022)

▶ M. Amrouche et al.: ELSA for partially collapsed Gibbs
sampling (PCGS): asymptotically Exact Location Scale
mixture Approximation for Bernoulli-D problems
Amrouche et al. (2022)

▶ theoretical guarantees
Durmus and Moulines (2017); Vono et al. (2022b); Laumont et al. (2022)

▶ L. Vargas, M. Pereyra et al.: Accelerated sampling using
Runge-Kutta discretization of Langevin equation: SK-ROCK
+ SGS - Pereyra et al. (2020)
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Related works

▶ L. Vargas, M. Pereyra et al., Accelerated sampling using
Runge-Kutta discretization of Langevin stochastic equation
⇒ SK-ROCK + SGS

[courtesy Pereyra et al. (2020), inpainting problem]
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Outline
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Capitalizing on machine learning
Various possible approaches

▶ Deep learning
strong expressivity
very efficient for supervised learning
large data set needed

▶ Direct inversion: y ⇒ x
fully supervised setting

Dong et al. (2014); Gao et al. (2019); Schwartz et al. (2018)

▶ Deep image prior
choose an architecture for x = fθ(z), fix z & optimize θ
similar to sparsity assumptions (functional analysis)

Ulyanov et al. (2018)

▶ Learnt priors
generative models: learn x = fθ(z) ; known p(z) ⇒ p(x)
proxf2 ≃ denoisers : Plug-and-Play (PnP) approaches

Venkatakrishnan et al. (2013); Zhang et al. (2021)
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Capitalizing on machine learning
PnP-ADMM

▶ Replacing proxf2 by a trained MAP denoiser

Recall (the zoo of prox):

proxλf2(x) = argmin
z

λf2(z) +
1

2
∥x− z∥22

Proximal operator = denoiser with prior ∝ exp[−f2(x)]:

D†
ε(x) = argmin

z
εf2(z) +

1

2
∥x− z∥22

▶ PnP-ADMM ⇐= replace proxλf2(x) by D†
ε(x)

▶ Chan et al. (2016)

Rk: any denoiser may not correspond to some proxf2 ; pb of theoretical

guarantees...
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Capitalizing on machine learning
PnP & gradient descent: PnP-ULA

▶ Using an MMSE denoiser & Tweedie’s identity

D∗
ε (x) = IE[x|xε]

pε(x) = p ∗ N (·; x, ε) ⇒ Tweedie’s identity:

−∇ log pε(x) =
1

ε
[x − D∗

ε (x)]

From MYULA

x(k+1) = x(k) − δ∇f1(x) + δ
1

λ
[proxλf2(x)− x] +

√
2δ w(k+1)

to PnP-ULA

x(k+1) = x(k) − δ∇f1(x)︸ ︷︷ ︸
likelihood

+ δ
1

ε
[D∗

ε (x)− x]︸ ︷︷ ︸
prior

+
√
2δ w(k+1)

Laumont et al. (2022)
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Capitalizing on machine learning
Plug-and-Play and splitting: PnP-SGS - F. Cœurdoux’s PhD, N. Dobigeon - IRIT

▶ PnP-SGS: using a deep denoiser as a prior in SGS

SGS uses Gibbs sampling from conditional posteriors

p (x | y, z) ∝ exp

[
−f (y, x)− 1

2ρ2
∥x− z∥22

]
(1)

p (z | x) ∝ exp

[
−g(z)− 1

2ρ2
∥x− z∥22

]
(2)
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▶ PnP-SGS: using a deep denoiser as a prior in SGS

DDPM: Denoising Diffusion Probabilistic Models

Learn backward SDE denoiser

pθ (xt−1 | xt) = N (xt−1;µθ (xt , t) ,Σθ (xt , t))

⇒ p (z | x)

Trained from forward SDE ”noising”

q (xt | xt−1) = N
(
xt ;
√

1− b(t)xt−1, b(t)I
)



79/89

Capitalizing on machine learning
Plug-and-Play and splitting: PnP-SGS - F. Cœurdoux’s PhD, N. Dobigeon - IRIT

▶ PnP-SGS: using a deep denoiser as a prior in SGS

Original image - noisy masked - PnP-ADMM - PnP-SGS - 90% cred. int.
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▶ PnP-SGS: using a deep denoiser as a prior in SGS

Quantitative evaluation (FID, LPIPS, PSNR, SSIM) of solutions:
inpainting 1000 images FFHQ 256× 256. Best, Second.

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑
PnP-SGS 38.36 0.144 23.59 0.813
TV-SGS 71.12 0.785 21.09 0.524
PnP-ADMM 123.61 0.692 22.41 0.325
TV-ADMM 181.56 0.463 22.03 0.784
Score-SDE 76.54 0.612 13.52 0.437
DDRM 69.71 0.587 9.19 0.319
MCG 39.26 0.286 21.57 0.751
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▶ PnP-SGS: using a deep denoiser as a prior in SGS

Runtime for each algorithm in Wall-clock time
(computed with a single GTX 2080Ti GPU).

Method Wall-clock time (s) Ref.

Score-SDE 36.71 Song et al. (2022)

DDRM 2.03 Kawar et al. (2022)

MCG 80.10 Chung et al. (2023)

PnP-ADMM 3.63 Chan et al. (2016)

SGS-ULA 218.90 Vono et al. (2019b)

PnP-SGS 13.81 latest news



80/89

Capitalizing on machine learning
Plug-and-Play and splitting: PnP-SGS - F. Cœurdoux’s PhD, N. Dobigeon - IRIT

original image
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noisy masked image
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PnP-SGS MMSE
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90% credibility intervals (PnP-SGS)
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90% credibility intervals (PnP-SGS)
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Related works: sampling using normalizing flows
F. Cœurdoux’s PhD, N. Dobigeon - IRIT

(Deep) Learning changes of variables (optimal transport)

Coeurdoux et al. (2023) , preprint
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Related works: sampling using normalizing flows
F. Cœurdoux’s PhD, N. Dobigeon - IRIT

(Deep) Learning changes of variables (optimal transport)

⇒ combining MALA and Normalizing Flows...

▶ MALAFlow: sampling in the Gaussian latent space

Coeurdoux et al. (2023) , preprint
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Efficient sampling for high dimensional problems

Nicolas Dobigeon, Maxime Vono, Pierre-Antoine Thouvenin

Pierre Palud, Audrey Repetti, Florentin Cœurdoux
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Conclusion
Efficient sampling for inverse problems in high dimensions

▶ SGS & SPA split-and-augment strategy

Bayesian inference for complex models

large scale problems (big & tall)

confidence intervals

▶ Efficient algorithms for inference: ULA, MALA, MYULA

acceleration of state-of-the-art sampling algorithms

distributed inference (privacy, distr. comput.)

▶ AXDA: unifying statistical framework

asymptotically exact: control parameter ρ

non-asymptotic theoretical guarantees

▶ Capitalizing on ML: trained denoisers
learning from representative samples

theoretical guarantees under mild assumptions?
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Applications & extensions

▶ Distributed sampling: fast and scalable: SPMD

localized operators

distributed computing: coding

confidence intervals

▶ Generative models for inference: PnP-ULA & PnP-SGS

learning sampling networks

evaluating posterior distributions

▶ AXDA: unifying statistical framework

ELSA for PCGS: Mehdi Amrouche’s PhD (J. Idier & H.
Carfantan)

VAE prior + AXDA: Mario Gonzalez’s PhD (A. Almansa, P.
Muse)
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Interested in AXDA for your statistical problems?

▶ https://github.com/mvono



87/89

Amrouche, M., Carfantan, H., and Idier, J. (2022), “Efficient Sampling of Bernoulli-Gaussian-Mixtures for Sparse
Signal Restoration,” IEEE Transactions on Signal Processing, 70, 5578–5591.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011), “Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers,” Foundations and Trends in Machine Learning, 3,
1–122.

Chan, S. H., Wang, X., and Elgendy, O. A. (2016), “Plug-and-play ADMM for image restoration: Fixed-point
convergence and applications,” IEEE Transactions on Computational Imaging, 3, 84–98.

Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and Ye, J. C. (2023), “Diffusion Posterior Sampling for General
Noisy Inverse Problems,” in Proc. of Int. Conf. on Learning Representations.

Coeurdoux, F., Dobigeon, N., and Chainais, P. (2023), “Learning Optimal Transport Between Two Empirical
Distributions with Normalizing Flows,” in Machine Learning and Knowledge Discovery in Databases, eds.
Amini, M.-R., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., and Tsoumakas, G., Cham: Springer Nature
Switzerland, pp. 275–290.

Dong, C., Loy, C. C., He, K., and Tang, X. (2014), “Learning a deep convolutional network for image
super-resolution,” in Proc. of Eur. Conf. on Comp. Vis., Springer, pp. 184–199.
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