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Local wind variability estimation is relevant in many situations

I For the risk of fatigue evaluation
Pictures from vestas turbines, hub height of 140 m; wind speeds of about 14-18 m/s (ref: from a
post on youtube)

I Air quality measurement uncertainty
I Need refined short term prediction of wind gust

the Ever-Given into the Suez canal

• Common features: near wall turbulence; presence of measurement points.

2/ 25

https://www.youtube.com/watch?v=mL_MgUakQSc&t=25s
https://www.youtube.com/watch?v=mL_MgUakQSc&t=25s


Local wind variability estimation is relevant in many situations

I For the risk of fatigue evaluation
Pictures from vestas turbines, hub height of 140 m; wind speeds of about 14-18 m/s (ref: from a
post on youtube)

I Air quality measurement uncertainty
I Need refined short term prediction of wind gust

the Ever-Given into the Suez canal
• Common features: near wall turbulence; presence of measurement points.

2/ 25

https://www.youtube.com/watch?v=mL_MgUakQSc&t=25s
https://www.youtube.com/watch?v=mL_MgUakQSc&t=25s


Local wind as a time series – prediction issues

Wind velocity vector measured at a point, at discrete time
(with a frequency range from 1 Hz to 50 Hz or more; here t is incremented each 0.1 s.).

Measurements from a
30m height mast with sonic
anemometer.

(SIRTA Observation

platform, Palaiseau,

France)

[Haeffelin et al., 2005].
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〈Uobs
t 〉 is commonly compute by an average in time over an interval of 10 minutes to 60 minutes,

corresponding to a minimum in the wind power spectral density.

Here the mean and intensity are plotted with the time-window ζ = 40 minutes.
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Wind forecasting models

Several scales and methods
Persistence – Naive Predictor U(t + k) = U(t) very short term (seconds to 30 minutes)

Physical Approach Global Forecasting, WRF, ... for long term (one day to one week)

Statistical Approaches ANN, TS-models for short term (30 minutes to 6 hours)

Hybrid Structures NWP + ANN, ... medium and long term (6 hours to1 week)

[Soman et al., 2010, Chang, 2014, Hanifi et al., 2020].

A double goal

(1) Propose a Times-series approach, based on SDEs derived from well established physical approaches
(that are all including turbulence modelling) to predict the short term distribution of the turbulent velocity.

(2) Use wind observation as experiments allowing to quantify the uncertainty on supposed well known
turbulence modelling parameters.
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Fluid particles
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tracers trajectories in turbulence
(borrowed from
[Bentkamp et al., 2019]).

taking the perspective of a ’air parcel’, and given the flow field U (t, x),
we consider parcel’s state variables (xf , Uf )

dxf
dt

(t) = Uf (t),
Uf (t) = U (t, xf (t)).

But how to get U (t, xf (t)) ?
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dxf
dt

(t) = Uf (t),
Uf (t) = U (t, xf (t)).

But how to get U (t, xf (t)) ?

2023 is the bicentenary of Navier’s work that led to the establishment of the master equations of fluid
mechanics, known as the Navier-Stokes equationsthat governing U (t, x)

∂tU
(i) + U (j)∂xjU

(i) = ν4U (i) −
1
%
∂xiP

∂xiU
(i) = 0

I Direct Numerical Simulation are from very expensive to totally prohibitive, as it requires a mesh below
the Kolmogorov length scale ηK in [50µm, 1mm] for most of industrial or environmental flows.
I Averaged Navier Stokes equations

U (t, x) 〈U 〉(t, x) + a model for the 2nd moments lost with the subscales



Fluid particles

7/ 25

Accuracy 

Length scale 

Ti
m

e 
sc

al
e

DNS

LES

RANS

SPH

Lagrangian 
Stochastic

Sub-grid m
odels

Fully  Resolved 

various averaged NS approaches
for CFD.

taking the perspective of a ’air parcel’, and given the flow field U (t, x),
we consider parcel’s state variables (xf , Uf )

dxf
dt

(t) = Uf (t),
Uf (t) = U (t, xf (t)).

But how to get U (t, xf (t)) ?

I U (t, x) = 〈U 〉(t, x) + noise. Lagrangian modelling requires a model for the noise

dxf

dt
(t) = 〈U 〉Ens, LES, RANS(t, xf (t)) + u(t)

with u(t) a random fluctuation of the Lagrangian mean velocity (Lagrangian Particle Dispersion Model
(LPDM)).
Turbulent second order closure (see e.g. [Durbin and Speziale, 1994, Pope, 1994]).
Macroscopic random fluctuation, assuming decorrelation of time increments that lead to Gaussian
fluctuation and 3D-Brownian motion B:

du(i)(t) = −
u(i)(t)
τf

dt+ (C0 ε)1/2dB
(i)
t , (the simplest Langevin model)

C0 Kolmogorov constant and ε the dissipation rate of the mean kinetic energy required.



Stand alone Lagrangian stochastic model

Modelling consistency: the conditional mean field of air parcel velocity is the conditional expectation of its
velocity

〈Uf 〉(t, x) = E
[
Uf (t)

∣∣xf (t) = x
]

︸ ︷︷ ︸
conditionning

on (Ω,F,P, B), with (xf , Uf ) solution of a General Langevin Model:

dxf (t) = Uf (t) dt,

dU
(i)
f (t) = −∂xi 〈P〉(t, xf (t))dt+

(
Gij

(
U

(j)
f − 〈U(j)

f 〉
))

(t, xf (t))dt+ σij(t, xf (t))dB(i)
t

B is a 3D-Brownian motion. (see e.g. [Durbin and Speziale, 1994, Pope, 2000, Minier and Peirano, 2001])

Gij = −
CR

2
ε

k
δij+C2∂j〈U

(i)
f 〉, σij =

2
3

(CRε+C2P− ε) δij ,

CR is the Rotta constant,C2 is the production isotropisation constant

I The probabilistic model is a McKean Vlasov SDE, with

〈 · 〉(t, x) = E[ · |xf (t) = x]

u(t) = Uf (t)− 〈Uf 〉(t, xf (t)).

P = 1
2Pii, the turbulent production term Pij := −(〈u(i)u(k)〉∂k〈U

(i)
f 〉 − 〈u

(j)u(k)〉∂k〈U
(j)
f 〉,

ε is closed with coherent parametrisation involving k = 1
2 〈u

(i)u(i)〉.
([Bossy et al., 2011, Bernardin et al., 2010, Bossy et al., 2013, Bossy et al., 2018] for first wellposedness analysis and numerical analysis for conditional

McKean Vlasov SDE).
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Numerical Stand alone Lagrangian stochastic model (in-house SDM code)

[Mokrani et al., 2019]

Very hight resolution simulation (downscaled from WRF)

Left: Numerical domain of the water body in WRF+SDM-WindPoS. Synchronised snapshot of the wind magnitude during the day on 24 April 2021
at the first height (10 m) of SDM-WindPoS. Middle: the subdomain is resolved to 150 m. Right: the resolution is 50 m.

Collaboration with SportRizer & Risk Weather Tech

(see also windpos.inria.fr/projects/aventage)
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From 3D+time Averaged Navier-Stokes equations to reduced 0D+time SDE

From the Generalized Langevin Model (GLM),
dx

(i)
f (t) = U

(i)
f (t)dt, 1 ≤ i ≤ 3,

dU
(i)
f (t) = − 1

ρ
∂i〈P〉(t, xf (t)) dt+Gij(t, xf (t)) (U(j)

f (t)− 〈U(j)
f 〉(t, xf (t)))︸ ︷︷ ︸

u(t) turb. velocity

dt

+ (C0ε)1/2 (t, xf (t)) dB(i)
t

〈P〉 is the mean pressure

(1)

Fix xf (t) = xobs,

ut = Uf (t)− 〈Uf 〉(t, xobs) 〈U(i)
f 〉(t, xobs) = E[U(i)

f (t)|xf (t) = xobs],

Then the SDE for the instantaneous turbulent velocity (ut, t ≥ 0) seen at xobs is

du
(i)
t = Gij(t, xobs)u

(j)
t dt+

√
C0(t, xobs)ε(t, xobs) dB

(i)
t ,

and its squared norm

d‖ut‖2 = −2u(j)
t Gij(t, xobs)u

(j)
t dt+ 3(C0ε)(t, xobs)dt+ 2

√
(C0ε)(t, xobs)‖ut‖ dWt,

with the process Wt =
∑
i

∫ t
0
u

(i)
s
‖us‖

dB
(i)
s identifies as a one-dimensional Brownian motion.
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Model hypothesis and turbulent closure

• We choose the isotropic (diagonal) structure for Gij

Gij(t, x) = −
CR

2
ε

k
(t, x) δij , where k(t, x) = 1

2E[‖ut‖2|xf (t) = x] (2)

corresponding to the Simplified Langevin model [Pope, 1985]. For consistency reason, C0 is now
C0 = 2

3 (CR − 1).

• We choose a model for the dissipation rate of the kinetic energy ε(t, x), classically used in the
atmospheric boundary layer (ABL) :

ε(t, x) =
Cε

`m
k3/2(t, x), (3)

where Cε is a constant, `m is a characteristic length scale called mixing length. Near the ground,
`m = κz, where z denotes the distance to the wall from x, and κ is the Von Kármán constant
[Cuxart et al., 2000, Drobinski et al., 2006].

C0, CR might vary according to the model and context : CR ∈ [1.5, 5], implying C0 ∈ [ 1
3 ,

8
3 ]

We set Cα = Cε
κz(xobs)

, with z(xobs) = 30m.

Von Kármán constant κ ∈ [0.287, 0.615] [Edeling et al., 2014].

Cµ ∈ [0.054, 0.135] [Edeling et al., 2014], for Cε = C
3/4
µ .

We expect the values of Cα to be within the interval [0.0061, 0.0259].
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The reduced 0D+time SDEs

At xobs, with notation qt = ‖ut‖2, such that k(t, xobs) = 1
2E[qt],

incorporating both Gij = −CR2
ε
k δij and the parametrisation of the dissipation ε = Cαk

3
2 ,

we end up with our physical-based model obtaining the following CIR-type stochastic mean-field TKE
model:

dqt = γdt− CR
Cα√

2
qt(E[qt])½dt+ 3C0

Cα

2
√

2
(E[qt])3/2dt+

√√
2C0Cα (E[qt])¾√qtdWt, (4)

C0 = 2
3 (CR − 1); q0 given.

[Bossy et al., 2022]

(1) For positive parameters Cα, C0, and γ, pathwise wellposedness holds for (qt; t ≥ 0) solution of the
McKean-Vlasov SDE (4).

(2) C 1γ>0 ≤ supt≥0 E[qpt ] ≤ C, for all p ≥ 1, for some constants C,C > 0.

(3) For p = 1,
q0 ∧

(√2γ
Cα

)2/3 ≤ sup
t≥0

E[qt] ≤ q0 ∨
(√2γ
Cα

)2/3
,

with long-time behaviour

lim
t→+∞

E[qt] =
(√

2γ
Cα

)2/3
.

using wellposedness condition for CIR processes with time dependant coefficients [Maghsoodi, 1996].

12/ 25



The reduced 0D+time SDEs

At xobs, with notation qt = ‖ut‖2, such that k(t, xobs) = 1
2E[qt],

incorporating both Gij = −CR2
ε
k δij and the parametrisation of the dissipation ε = Cαk

3
2 ,

we end up with our physical-based model obtaining the following CIR-type stochastic mean-field TKE
model:

dqt = γdt− CR
Cα√

2
qt(E[qt])½dt+ 3C0

Cα

2
√

2
(E[qt])3/2dt+

√√
2C0Cα (E[qt])¾√qtdWt, (4)

C0 = 2
3 (CR − 1); q0 given.

[Bossy et al., 2022]

(1) For positive parameters Cα, C0, and γ, pathwise wellposedness holds for (qt; t ≥ 0) solution of the
McKean-Vlasov SDE (4).

(2) C 1γ>0 ≤ supt≥0 E[qpt ] ≤ C, for all p ≥ 1, for some constants C,C > 0.

(3) For p = 1,
q0 ∧

(√2γ
Cα

)2/3 ≤ sup
t≥0

E[qt] ≤ q0 ∨
(√2γ
Cα

)2/3
,

with long-time behaviour

lim
t→+∞

E[qt] =
(√

2γ
Cα

)2/3
.

using wellposedness condition for CIR processes with time dependant coefficients [Maghsoodi, 1996].

12/ 25



The calibration problem

A two steps strategy

1. Construct first a simple maximum likelihood estimator to recover the model constants from the data.

2. Next introduce a Bayesian estimation to quantify the uncertainty on theses parameters.

Difficulty : McKean Vlasov form of the model.

Two linearization tentatives :

• E[qt] qt

dqt = γdt−Aq3/2
t dt+Bqt

5/4dWt

• E[qt] E[q∞], explicitly known, leading to

dqt = Θ (µ− qt) dt+ σ
√
qtdWt,

13/ 25



Linearisation E[qt] −→ qt: Wellposedness and control of moments

dqt = γdt− Cα√
2
q

3/2
t dt+

√√
2C0Cαqt

5/4dWt, q0 = |u′0|2

SDEs with superlinear growth coefficients :

dYt = γdt−B Y 2α−1
t dt+ σY αt dWt, Y0 = y0 > 0, with α > 1. (5)

[Bossy et al., 2022]

Assume γ,B ≥ 0. Then there exists a unique (strictly) positive strong solution Y to the SDE (5).

Moments : For p such that 0 ≤ 2p ≤ 1 + 2B
σ2 , supt∈[0,T ] E

[
Y 2p
t

]
< +∞.

Exponential moments : for all µ ≤ C(α, γ), supt∈[0,T ] E
[

exp{µ
∫ t
0Y

2α−2
s ds}

]
< +∞.

Here 2B
σ2 = 1

C0
, so only C0 ∈ [ 1

3 , 1] ensures that E[q2
t ] is finite.

• The (linear) model behave in time like the McKean Vlasov model (when γ = 0)
lim

t→+∞
E[qt] = 0, lim

t→+∞
t2E[qt] = 4

C2
α(C2

0 +3C0+2) .

• The Euler scheme qtn+1 = qtn +B|qtn |3/2 + σ|qtn |5/4(Wtn+1 −Wtn ) is almost surely
converging [Gyongy, 1998], allowing to propose a consistent Maximun Likelyhood estimator for (Cα, C0, γ).

Falling in case of strong L1 divergence of the Euler scheme [Hutzenthaler et al., 2010] for SDEs with super-linear
growth condition.
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Linearisation E[qt] −→ E[q∞] =
(√

2γ
Cα

)2/3

CIR model for the instantaneous TKE:

dqt = Θ(Cα, γ) (µ(Cα, γ)− qt) dt+ σ(γ)√qtdWt, q0 given, and γ > 0, (6)

where
Θ(Cα, γ) = CR(C

2
αγ

2 )1/3, µ(Cα, γ) = (
√

2 γ
Cα

)2/3, σ(γ) =
√

2C0γ.

with physical parameters : (γ, C0, (CR), Cα)

P(inf{t ≥ 0, qt = 0} = +∞) = 1⇐ 2Θ(Cα, γ)µ(Cα, γ) ≥ σ2(γ)⇐ CR ≥ C0 structurally always
satisfied.

Symmetrized Euler scheme : for SDE (6), tn = n∆t

q̂tn+1 = |q̂tn + Θ(Cα, γ) (µ(Cα, γ)− q̂tn ) ∆t+ σ(γ)
√
q̂tn

(
Wtn+1 −Wtn

)
| (7)

Equivalently
q̂tn+1 ∼ |N

(
q̂tn + Θ(Cα, γ)(µ(Cα, γ)− q̂tn )∆t, σ2(γ)q̂tn∆t

)
|.

Under the assumption C0 < 2, the scheme (7) converges in law with a rate one [Bossy and Diop, 2010].

We fix C0 = 1.9 (in accordance with the literature).
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(Ĉα, γ̂) estimators

Considering the compact set D ⊂ R+ × R+ supporting the admissible values of θ = (Cα, γ),
choosing ∆t according to some data frequency, we compute the pseudo-maximum likelihood estimator

θ̂ = arg max
θ∈D

log pθ∆t(q
obs
0 , . . . , qobs

tN
),

allowing for an explicit solution of the optimal pair (Ĉα, γ̂)

Define empirical moments

M̂m1,m2 =
1
N

N−1∑
n=0

(qobs
tn+1 − |q

obs
tn
|)m1 |qobs

tn
|m2 . (8)

Quadratic variation estimator for γ:

γ̂ =
M̂2,0

2C0∆tM̂0,1
, (9)

Pseudo-maximum likelihood estimator of Cα:

Ĉα =
√

2√
γ̂

max
{
c∗

√
γ̂
√

2
,
(max{γ̂∆tCR − M̂1,0 , 0}

M̂0,1∆tCR

)3/2}
(10)

for some lower bound c∗ to choose in [0, 0.0061].
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Step zero : Prior calibration with time depend regime

We end up with a family of estimators

Σ := {(Ĉα(d), γ̂(d)), for d in the selection of day-periods S in the year 2017},

Point-estimations for each Wednesday of 2017.
The dark grey area (right) is the reference interval compiling turbulence closure literature.

Priori distributions, defined as truncated Gaussian distributions:

γ ∼ N+ (Γ(S),VΓ(S)
)
, Cα ∼ N+ (C(S),VC(S)

)
,

with Γ(S), C(S),VΓ(S) and VC(S) are the empirical means and variances over the days.
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Step one: Posterior calibration

Goal : use Bayesian inference to extract precise information on the parameters distributions π(θ|qobs) from
the data qobs, with θ = (γ, Cα),

π(θ|qobs) =
p(qobs|θ) pθ(θ)

p(qobs)
, (11)

where

• p( · |θ) the probability density of the model given the parameters (likelihood function, given)

• pθ the prior distribution of θ (prior distribution, given),

• p(qobs) is the distribution of the observed data with

qobs(θ) = q̂(θ) + E

• q̂(θ) is the i.i.d random vector variable, with the equilibrium law (for a given θ) of the discrete-time model (7);
• the random Error vector E∼ centred logistic distribution and scale parameter to be estimated from the data.

Choice made from a step0 analysis fitting the histogram of observation error distribution with a set of explicit
mean-variance probability densities.

February 1st February 8th February 15th February 22th

Method : Metropolis-Hasting algorithm and its Hamiltonian Monte Carlo (HMC) variant.

We have used the Python package PyMC3 [Salvatier et al., 2016] with the No U-Turn sampler[Gelman and Hoffman, 2014]

method.
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Posterior calibration on Cα

Box plots within month of posterior distribution of Ĉα,
constructed from the Markov chains samples in a given month.

Posterior mean estimations of Ĉα(d) for each considered day

Two examples of Exploration of the state space with the Markov chain and posterior distribution

19/ 25



Posterior calibration on γt over days and over 20 minutes periods

Bayesian calibration of γ during February, 2017

Box plot of the γ(d, i) for i = 1, . . . , 48 for
each 20 minutes-length sub-signal

The t 7→ γ̄t obtained from Step one for the
same four days; the horizontal lines are the
level of the means over the period (the black
line is the Step zero estimator).
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Validation of the calibration procedure against the observation

qobs for d = Feb 1st

qobs for d = Feb 8th

qobs for d = Feb 15

qobs for d = Feb 22th

Instantaneous turbulent kinetic energy observed during February, 2017, between 5 a.m and 8 p.m (color
plots) using the frequency of 1/30 s−1

95% confidence interval (plotted in black) of (qtn , n) using the posterior mean values Ĉα(d) and the time
dependent mean γ̄(t) =

∑S
i=0 E[γ(d, i)]1[Ti,Ti+1](t), with ∆t = 30s.
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Prediction of the confidence interval
The 10-minutes turbulence intensity as a substitute to the calibration of (γ̄t)

CIR model for the instantaneous TKE:

dqt = Θ(Cα, γ(t))(µ(Cα, γ(t))− qt) dt+ σ(γ(t))√qtdWt

suggests that γ(t)−
(
C2
αγ(t)

2

)1/3

E[qt] = 0, from which we deduce the formal relation:

γ(t) = Cα√
2

(√
3‖〈Uobs

(d)〉‖It
)3
. (12)

Putting the empirical It =
√
〈‖Uobs

t − 〈Uobs
t 〉
∥∥2〉/
√

3‖〈Uobs
(d)〉‖ in (qtn , n).

95% Confidence interval of (qtn , n) obtained using the posterior

mean values Ĉα(d) and the time dependent mean

γ̄(t) =
∑S
i=0 E[γ(d, i)]1[Ti,Ti+1](t), ∆t = 30s.

Prediction of the 95% Confidence interval of (qtn , n) obtained by

sampling the within-year posterior distribution ofCα and the time

dependent mean γ̄(t) replaced by the turbulent intensity statistic

through (12), ∆t = 30s.

In green: the instantaneous turbulent kinetic energy observed during February 15th, 2017, between 7 a.m
and 8 p.m using the frequency of 1/30 s.
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As a conclusion (work in progress) : Gust modelling and intermitency

The wind gust speed Umax is defined as a short-duration maximum of the horizontal wind speed
[Suomi and Vihma, 2018]

Umax(t̄) = max
{
Uf (s); s ∈ [t̄− hg , t̄]

}
.

(the choice of the gust duration hg may vary with the activity sector).

Some predictive frameworks are ready to use, for example

Umax(t̄) = 〈U〉(t̄) + turbulent kinetic energy× gx.

where, for a R level is fixed, the peak factor gx, such that

P(Umax(t̄) < gx) = 1−R

is given by some model formula (under assumption of
stationary, and Gaussian behaviour of the acceleration)
[Schreur and Geertsema, 2008].
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Can we use the stochastic model to compute the probability of having a gust?

I within the CIR model
For a significance level R, we want to compute the probability

P(qt + ∆t > gx|qt) = R

I Improvement of the model and noises

• Introduce acceleration :

dxf (t) = Uf (t) dt,

dU
(i)
f (t) = −∂xi 〈P〉(t, xf (t))dt+

(
Gij

(
U

(j)
f − 〈U(j)

f 〉
))

(t, xf (t))dt+ a(t)dt

da(t) = −βa(t)dt+ σij(t)dB
(i)
t

[Innocenti et al., 2020]

• Introduce intermittency : K62, the dissipation ε is a log-normal process.
εt = E[εt] exp(

√
λIXt + λI

2 E[X2
t ])

with Xt
• Ornstein-Uhlenbeck (K62)
• Stochastic Voltera equation reaching log correlation [Letournel et al., 2021]
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Some concluding remarks

Modelling of the distribution of the instantaneous wind speed for short term prediction purpose.

• Starting from the physical turbulent modelling, a 3d+time velocity field dynamics, we end up with several
propositions of 0d+time stochastic models.

• The simplest proposition (CIR TKE)

• allows to recover from measurements parameters values that fit the interval values given by the expert’s
knowledge, as a validation of the physical meaning of the model.

• allows to give a good prediction of the 95% CI
qobs for d = November 10th and its predicted 95% CI

• Still some need for stable explicit schemes for MLE prior calibration purpose

• Raising the still challenging question about MLE for McKean Vlasov

• Improving the modelling thorough uncertainty parameters inference.
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