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Local wind variability estimation is relevant in many situations

» For the risk of fatigue evaluation
Pictures from vestas turbines, hub height of 140 m; wind speeds of about 14-18 m/s (ref: from a
post on youtube)

» Air quality measurement uncertainty » Need refined short term prediction of wind gust

the Ever-Given into the Suez canal
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Local wind variability estimation is relevant in many situations

» For the risk of fatigue evaluation
Pictures from vestas turbines, hub height of 140 m; wind speeds of about 14-18 m/s (ref: from a
post on youtube)

» Air quality measurement uncertainty » Need refined short term prediction of wind gust

the Ever-Given into the Suez canal
® Common features: near wall turbulence; presence of measurement points.
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Local wind as a time series — prediction issues

Wind velocity vector measured at a point, at discrete time
(with a frequency range from 1 Hz to 50 Hz or more; here t is incremented each 0.1 s.).
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<U§b5> is commonly compute by an average in time over an interval of 10 minutes to 60 minutes,
corresponding to a minimum in the wind power spectral density.

Here the mean and intensity are plotted with the time-window ¢ = 40 minutes.
3/ 25



Wind forecasting models

Several scales and methods

Persistence — Naive Predictor U(t+k)=U(t) very short term (seconds to 30 minutes)
Physical Approach Global Forecasting, WRF, ... for long term (one day to one week)
Statistical Approaches ANN, TS-models for short term (30 minutes to 6 hours)
Hybrid Structures NWP + ANN, ... medium and long term (6 hours to1 week)

[Soman et al., 2010, Chang, 2014, Hanifi et al., 2020].

A double goal
(1) Propose a Times-series approach, based on SDEs derived from well established physical approaches
(that are all including turbulence modelling) to predict the short term distribution of the turbulent velocity.

(2) Use wind observation as experiments allowing to quantify the uncertainty on supposed well known
turbulence modelling parameters.
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Fluid particles

taking the perspective of a "air parcel’, and given the flow field % (¢, x),
we consider parcel’s state variables (zf, Uy)

&4 () = Uy (v),
U (t) = % (t, 2 (1))

' o
\
3 \
tracers trajectories in turbulence

(borrowed from
[Bentkamp et al., 2019]).

But how to get 7 (t, ¢ (t)) ?
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Fluid particles

taking the perspective of a "air parcel’, and given the flow field % (¢, x),
we consider parcel’s state variables (zf, Uy)

/ |
'“\s
tracers trajectories in turbulence

(borrowed from [Bentkamp et al., 2019]).

&4 () = Uy (v),
U (t) = % (t, 2 (1))

But how to get 7 (t, ¢ (t)) ?

2023 is the bicentenary of Navier’s work that led to the establishment of the master equations of fluid
mechanics, known as the Navier-Stokes equationsthat governing % (¢, =)

. . . . 1
WU + U Doy, u D =viuD — ~o,, P
o
O, %D =0
» Direct Numerical Simulation are from very expensive to totally prohibitive, as it requires a mesh below
the Kolmogorov length scale 7« in [50 um, 1mm] for most of industrial or environmental flows.

» Averaged Navier Stokes equations

U (t,x) ~ (%)(t, z) + amodel for the 2nd moments lost with the subscales

6/ 25



Fluid particles

taking the perspective of a "air parcel’, and given the flow field % (¢, x),
we consider parcel’s state variables (zf, Uy)

Time scale

&4 () = Uy (v),
U (t) = % (t, 2 (1))

Lagrangian
Stochastic

But how to get 7 (t, ¢ (t)) ? Length scale

various averaged NS approaches
for CFD.

» U (t,x) = (%)(t,z) + noise. Lagrangian modelling requires a model for the noise

diy

at (t) = (% )gns, Les, rans (> T (1)) + u(t)

with w(t) a random fluctuation of the Lagrangian mean velocity (Lagrangian Particle Dispersion Model
(LPDM)).
Turbulent second order closure (see €.g. [purbin and Speziale, 1994, Pope, 1994]).
Macroscopic random fluctuation, assuming decorrelation of time increments that lead to Gaussian
fluctuation and 3D-Brownian motion B:
du(® (t) = f@dt + (Co E)I/QdB,Ei)7 (the simplest Langevin model)
f

Cp Kolmogorov constant and ¢ the dissipation rate of the mean kinetic energy required.
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Stand alone Lagrangian stochastic model

Modelling consistency: the conditional mean field of air parcel velocity is the conditional expectation of its
velocity

(Up) (1) = E[Up (t) |y (1) = 2]

N—_——
conditionning

on (2, %,P, B), with (xf, Uy) solution of a General Langevin Model:

day (t) = Uy (t) dt,

AU (t) = =00, (2) (b ap )t + (Goy (U = (UF)) (4 (1)t + 035 (8, 2 (1) d B
B is a 3D-Brownian motion. (see e.g. [purbin and Speziale, 1994, Pope, 2000, Minier and Peirano, 2001])

C € 2
G'LJ = “R 5“+028 < > Oij = g (CRE“FCQ@ — E) 5”7

C R is the Rotta constant, C'a is the production isotropisation constant
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Stand alone Lagrangian stochastic model

Modelling consistency: the conditional mean field of air parcel velocity is the conditional expectation of its
velocity

(Up) (1) = E[Up (t) |y (1) = 2]

N—_——
conditionning

on (2, %,P, B), with (xf, Uy) solution of a General Langevin Model:

day (t) = Uy (t) dt,

AU (8) = — 05, (P) (¢, 2p (1)) dt + (Gij (Uf“) - <Uf(j>>)> (t, 27 (£))dt + 01 (£, 27 (£))dBLY
B is a 3D-Brownian motion. (see e.g. [purbin and Speziale, 1994, Pope, 2000, Minier and Peirano, 2001])

C € 2
G'LJ = “R 51]+028 < > Oij = g (CRE“FCQ@ — E) 5”7

C R is the Rotta constant, C'a is the production isotropisation constant

» The probabilistic model is a McKean Vlasov SDE, with

()t 2) = B[ | (1) = =]
u(t) = Up(t) — (Up) (¢, z¢ (1))
P = %Eﬁn the turbulent production term %;; := —((u(i)u(.k))QMUf(i)) - (u(j)u(k>>8k(Uf(j)>,
€ is closed with coherent parametrisation involving k = %(u“)u(’)).
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Numerical Stand alone Lagrangian stochastic model (in-house SDM code)

Almeida - Particle Trayectory - 2D (X,Z) - t=0.73s

[Mokrani et al., 2019]
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https://www.sportrizer.com
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https://windpos.inria.fr/projects/aventage/

Numerical Stand alone Lagrangian stochastic model (in-house SDM code)

Almeida - Particle Trayectory - 2D (X,Z) - t=0.73s

[Mokrani et al., 2019]

Very hight resolution simulation (downscaled from WRF)

Left: Numerical domain of the water body in WRF+SDM-WindPoS. Synchronised snapshot of the wind magnitude during the day on 24 April 2021
at the first height (10 m) of SDM-WindPoS. Middle: the subdomain is resolved to 150 m. Right: the resolution is 50 m.

Collaboration with SportRizer & Risk Weather Tech
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From 3D+time Averaged Navier-Stokes equations to reduced OD+time SDE

From the Generalized Langevin Model (GLM),

daf) (1) = U(Z>(t)dt 1<i<3, . ‘
dU( J(t) = —L0:(2) (t, 2y (1) dt + Gij (£, 27 (1)) (U (8) — (US) (2, 25(1))) dt

) w(t) turb. velocity (1)
+ (Coe) /2 (t, 24 (t)) dB{”

(&) is the mean pressure
Fix .Z’f(t) = Zobs,

= Up(t) = (Up)(t, wobs)  (Uf”)(t Tobs) = E[US (1) () = wobs],

Then the SDE for the instantaneous turbulent velocity (u¢,t > 0) seen at Tops is

dugw = Gij(t, wobs)uij)dt + \/Co(t, Zobs)E(t, Tobs) ngi),
and its squared norm

dllu]|? = =20 Gy (t, Tops)ul? dt + 3(Coe)(t, Tobs)dt + 21/ (Coe) (t, Tops) |lut ]| dWr,

with the process W; = Z ft ‘”“j T ( ) identifies as a one-dimensional Brownian motion.
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Model hypothesis and turbulent closure

+ We choose the isotropic (diagonal) structure for G;;

CRr e
Gij(t,x) = _TRi(t’m) 0ijs where k(t,z) = %E[Huz\\2|mf(t) = ] 2)

corresponding to the Simplified Langevin model (pope, 1985. For consistency reason, C is now
Co=2(Cr—1)
0 3( R .
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Model hypothesis and turbulent closure

+ We choose the isotropic (diagonal) structure for G;;

Gij(t,x) = _TE(t’I) 8ij, where k(t,z) = %IEI[HutH2|J:f(t) = ]

corresponding to the Simplified Langevin model (pope, 1985. For consistency reason, C is now
Co=3(Cr—1).
» We choose a model for the dissipation rate of the kinetic energy (¢, x), classically used in the
atmospheric boundary layer (ABL) :
3)

) = FR (1)

where C: is a constant, /1, is a characteristic length scale called mixing length. Near the ground,
¢m = Kz, where z denotes the distance to the wall from x, and « is the Von Karman constant

[Cuxart et al., 2000, Drobinski et al., 2006].
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Model hypothesis and turbulent closure

+ We choose the isotropic (diagonal) structure for G;;

G’ij(t,m) = —7i(t,$) 6ij, where k(t, :13) = %E[HutH2|$f(t) = .Z’} (2)

corresponding to the Simplified Langevin model (pope, 1985. For consistency reason, C is now

Co = %(CR —1).
» We choose a model for the dissipation rate of the kinetic energy (¢, x), classically used in the

atmospheric boundary layer (ABL) :

et,z) = f—sk“ﬁ(t, x), 3)

where C: is a constant, /1, is a characteristic length scale called mixing length. Near the ground,
¢m = Kz, where z denotes the distance to the wall from x, and « is the Von Karman constant

[Cuxart et al., 2000, Drobinski et al., 2006].

Co, C'r might vary according to the model and context : Cr € [1.5, 5], implying C € [%, g] a

We set C, = % with z(zops) = 30m.

Von Karman constant « € [0.287, 0.615] (gdeiing et al, 2014].
C)u € [0.054, 0.135] fedeing et 2014, for Ce = C/*.
& We expect the values of C, to be within the interval [0.0061, 0.0259].
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The reduced OD+time SDEs

At Tops, With notation g; = ||u¢||?, such that k(t, zops) = %E[qt],
3
incorporating both G;; = fCTR ﬁéij and the parametrisation of the dissipation ¢ = C', k2,

we end up with our physical-based model obtaining the following CIR-type stochastic mean-field TKE
model:

Ca ) Ca . 5
dqs = ~ydt — CRﬁqt(E[QtD/zdt + 300@(15‘4[%])3/2& +V/V2C0Cq (Bl /qdWe, — (4)

Co = %(CR —1); qo given.
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The reduced OD+time SDEs

At Tops, With notation g; = ||u¢||?, such that k(t, zops) = %E[qt],
3
incorporating both G;; = *CTTR ﬁ&ij and the parametrisation of the dissipation e = C', k2,

we end up with our physical-based model obtaining the following CIR-type stochastic mean-field TKE
model:

Ca 1 Ca a /o 3,
dqs = ~ydt — CRﬁqt(]E[Qt])/zdt +3Co m(E[qt])ﬂ/zczt +V/V2C0Cq (Bl /qdWe, — (4)

C() = %(CR — 1); q0 given.
[Bossy et al., 2022]

(1) For positive parameters C, Co, and -y, pathwise wellposedness holds for (g¢; ¢ > 0) solution of the
McKean-Vlasov SDE (4).

(2) C1y>0 <sup;>q E[g}] < C, forallp > 1, for some constants C, C' > 0.
(8) Forp=1,
2/3 2/3
q A (‘5—2:) /%< SI>1IO>1E[qt} <qoV (%) /3,
t>

with long-time behaviour

i = (£2)?
ti:Too]E[qt] o ( Ca ) '

using wellposedness condition for CIR processes with time dependant coefficients (maghsoodi, 1996].
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The calibration problem

A two steps strategy

1. Construct first a simple maximum likelihood estimator to recover the model constants from the data.

2. Next introduce a Bayesian estimation to quantify the uncertainty on theses parameters.

Difficulty : McKean Vlasov form of the model.

Two linearization tentatives :
* Elge] ~ at
dq; = vdt — Aq}dt + Bgi**dW
* E[gt] ~ E[goc], explicitly known, leading to

dgr = © (u — q¢) dt + o/qedW4,
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Linearisation E[q;] — ¢;: Wellposedness and control of moments

dgr = ~dt — f 3/2dt+ \ V2C0Caqi® dWe, qo = |up|?

SDEs with superlinear growth coefficients :

dYy = vdt — BY* 7 dt + oY dWy, Yo = yo >0, witha > 1. (5)
[Bossy et al., 2022]

Assume v, B > 0. Then there exists a unique (strictly) positive strong solution Y to the SDE (5).

Moments : For psuchthat0 < 2p <1+ 22, sup,c(o ) E[V;**] < +o0.
Exponential moments : for all 1 < C(av, ), supe o ) E[ exp{p [y Y7 ?ds}] < +o0.
,soonly Cp € [7 1] ensures that E[¢?] is finite.

2B _ 1
& Here 23 =&

« The (linear) model behave in time like the McKean Vlasov model (when v = 0)
Jm Ela] =0, lim #°Elee] = 5rrerise,ay-

+ The Euler scheme g, , = gt,, + Blat, [ + olqe, |'“/“(W,g,”Jrl — Wh,,) is almost surely
converging (cyongy, 1ese], allowing to propose a consistent Maximun Likelyhood estimator for (Ca, Co, 7).

A Falling in case of strong L' divergence of the Euler scheme (Hutzentnaler ot al. 2010) for SDEs with super-linear
growth condition.
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Linearisation E[¢;] — E[goo] = (

CIR model for the instantaneous TKE:

dgr = O(Ca,7) (M(Casv) — qt) dt + o(v)\/qedWr, qo given,and v > 0, (6)
where

O(Car) = CRIGENY3, p(Cayy) = (V2G)?,  o(y) = v/2Con.

(e

with physical parameters : (v, Co, (Cr), Ca)

P(inf{t > 0,q; = 0} = +00) = 1 <= 20(Ca,7)(Ca,7) > 02 () <= Cr > Cy structurally always
satisfied.
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Linearisation E[¢;] — E[goo] = (

CIR model for the instantaneous TKE:

dgr = ©(Ca,7) (1(Cas ) — qi) dt + o(v)/q@dWe,  qo given,and v > 0, (6)

where c2
O(Ca,7) = CR(ZED)M3, u(Cay) = (V2G)?/3,  aly) = /2Con.

with physical parameters : (v, Co, (Cr), Ca)

P(inf{t > 0,q; = 0} = +00) = 1 <= 20(Ca,7)(Ca,7) > 02 () <= Cr > Cy structurally always
satisfied.

Symmetrized Euler scheme : for SDE (6), t,, = nAt

Ttrpr = 1@t + O(Cay ) (1(Cas V) = ) At + 0 (VG (Wi — We) | ™

Equivalently
(/]\tn+1 ~ |N(‘/1\tn + e(Om’Y)(#(CavW) - (/Z\tn)At7 UQ(V)Z]\tnAt)'-

Under the assumption Cp < 2, the scheme (7) converges in law with a rate one (gossy and diop, 2010).

We fix Cyp = 1.9 (in accordance with the literature).
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(@,, ~) estimators

Considering the compact set D C Rt x Rt supporting the admissible values of 0 = (C4,, ),
choosing At according to some data frequency, we compute the pseudo-maximum likelihood estimator

0 = arg max logph,(ad®, ..., a%),
oeD

allowing for an explicit solution of the optimal pair (éa, )

Define empirical moments

My mg = — Z (a5, = laB2 )™ lagye ™2 (®)
n=0

Quadratic variation estimator for y:
~ Ms o
’Y = == (9)
2Co AtMop 1

Pseudo-maximum likelihood estimator of C,:

G V2 {c* NG (max{ﬁAtCR — 1\//71,0 ,0})3/2} (10)

\/57 ]T/f\o,lAtCR

for some lower bound ¢, to choose in [0, 0.0061].
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Step zero : Prior calibration with time depend regime

We end up with a family of estimators

Y= {(éa (d), 7(d)), for d in the selection of day-periods § in the year 2017},

-estimation q q
Y Cq-estimation
.
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Point-estimations for each Wednesday of 2017.
The dark grey area (right) is the reference interval compiling turbulence closure literature.

Priori distributions, defined as truncated Gaussian distributions:
g N+ (f(S)vvl—‘(S)) ) Ca ~ ./V+ (6(8)7VC (8)) B
with T'(S), C(S), Vr(S) and V- (S) are the empirical means and variances over the days.
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Step one: Posterior calibration

Goal : use Bayesian inference to extract precise information on the parameters distributions (8|g°®) from
the data g°®%, with 6 = (v, C4),
obs 0 2]
ﬂ.(9|qob3) _ (g )bpo( )7 A1)
p(q°®)

where

« p(-]6) the probability density of the model given the parameters (likelihood function, given)
 pg the prior distribution of 6 (prior distribution, given),
+ p(g°®) is the distribution of the observed data with

a®(0) = q(0) + 8

« q(0) is the i.i.d random vector variable, with the equilibrium law (for a given 0) of the discrete-time model (7);

« the random Error vector € ~ centred logistic distribution and scale parameter to be estimated from the data.
Choice made from a step0 analysis fitting the histogram of observation error distribution with a set of explicit
mean-variance probability densities.

February 1st February 8th February 15th February 22th
Method : Metropolis-Hasting algorithm and its Hamiltonian Monte Carlo (HMC) variant.
We have used the Python package PyMCS3 [sanatier et al, 2016] With the No U-Turn samplerceiman and Hoffman, 2014]

method.
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Posterior calibration on

o020

et

Box plots within month of posterior distribution of éa,
constructed from the Markov chains samples in a given month.

Ca-estimation: Step 1

G

oo oo N et ey - - RN o o s oec

Posterior mean estimations of éa (d) for each considered day

calp calp
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I01I | [ | | LIyt

00115 00120 00125 00130 00135 00140 00145 o 2% %0 750 1000 1250 1500 1750

Two examples of Exploration of the state space with the Markov chain and posterior distribution
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Posterior calibration on ~; over days and over 20 minutes periods

Bayesian calibration of y during February, 2017

o

Box plot of the y(d, ¢) fori = 1,. .., 48 for
each 20 minutes-length sub-signal

— Step o estimator
— Step 1 mean-estimatoroleb.

The t — 7+ obtained from Step one for the e et
same four days; the horizontal lines are the B A A RS,
level of the means over the period (the black
line is the Step zero estimator).

o0 — st
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Validation of the calibration procedure against the observation

q°s for d = Feb 1st g° for d = Feb 15

1 R 3 1 1® 20

q°°s for d = Feb 8th q°°s for d = Feb 22th

20

10

Ty

dubetl W

'm Mrh |)|

‘\(
bl

Instantaneous turbulent kinetic energy observed during February, 2017, between 5 a.m and 8 p.m (color
plots) using the frequency of 1/30 s~

95% confidence interval (plotted in black) of (g¢,, , ) using the posterior mean values Ca (d) and the time
dependent mean 7(t) = Zf:o Elv(d, )17, T,,,](t), with At = 30s.
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Prediction of the confidence interval

The 10-minutes turbulence intensity as a substitute to the calibration of (7;)

CIR model for the instantaneous TKE:

dgr = O(Ca,v(£)) (1(Ca, ¥(1) — q¢) di + o (v(£))/qed Wy

2 1/3
suggests that v(t) — (CLYTW) E[g:] = 0, from which we deduce the formal relation:

3
() = S (VAIUE)IE) (12)

Putting the empirical I; = \/ ([|U£** — (U?™)|*)/V3I(USES) | in (t,,.m).

B
k)

qt during 15
o v % %

qt during 15
o v % T

® © 2 W 6

@ »
- 1© 12 Rul 1 18 20
Prediction of the 95% Confid interval of btained by
95% Confidence interval of (g¢,, , n) obtained using the posterior rediction of the 95% Confidence interval of (qs, , ) obtained by
=~ ling the within- terior distribution of C' d the i

mean values C'o, () and the time dependent mean sampling the within-year posterior distribution of C'r, and the time

_ s . dependent mean 7 (t) replaced by the turbulent intensity statistic
() = Lo EN(d, D)L pry, 1, 11 (8), At = 30s.

through (12), At = 30s.
In green: the instantaneous turbulent kinetic energy observed during February 15th, 2017, between 7 a.m
and 8 p.m using the frequency of 1/30 s.
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As a conclusion (work in progress) : Gust modelling and intermitency

The wind gust speed Unax is defined as a short-duration maximum of the horizontal wind speed

[Suomi and Vihma, 2018]
Umax(t) = max{Uf(s);s clt— hg,ﬂ},

(the choice of the gust duration A9 may vary with the activity sector).

Some predictive frameworks are ready to use, for example

Umax(t) = (U)(t) + turbulent kinetic energy X ga.

where, for a R level is fixed, the peak factor g.,, such that

P(Umax(t) < gz) =1—R

is given by some model formula (under assumption of
stationary, and Gaussian behaviour of the acceleration)

[Schreur and Geertsema, 2008].
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Can we use the stochastic model to compute the probability of having a gust?

» within the CIR model
For a significance level R, we want to compute the probability

P(qt + At > gzlqt) = R

» Improvement of the model and noises

« Introduce acceleration :
day (t) = Up(t) dt,

AU (8) = —02,(2P) (¢, 2y ())de + (Gij (Uf(j) - <Uf<j>>)) (t, 2 (t))dt + a(t)dt
da(t) = —Ba(t)dt + o4; (t)dB

[Innocenti et al., 2020]

« Introduce intermittency : K62, the dissipation ¢ is a log-normal process.

et = E[ee] exp(vA1X¢ + 2LE[X?))
with X

« Ornstein-Uhlenbeck (K62)
« Stochastic Voltera equation reaching log correlation [Letournel et al., 2021]
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Some concluding remarks

Modelling of the distribution of the instantaneous wind speed for short term prediction purpose.

« Starting from the physical turbulent modelling, a 3d+time velocity field dynamics, we end up with several
propositions of 0d+time stochastic models.
» The simplest proposition (CIR TKE)

« allows to recover from measurements parameters values that fit the interval values given by the expert’s
knowledge, as a validation of the physical meaning of the model.

« allows to give a good prediction of the 95% Cl
q°® for d = November 10th and its predicted 95% CI

H' % b 1‘»'

A ‘r[|‘ hilll “x h_ Juﬁ \‘H“' ““ L

16 20 22

« Still some need for stable explicit schemes for MLE prior calibration purpose
« Raising the still challenging question about MLE for McKean Vlasov

« Improving the modelling thorough uncertainty parameters inference.
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