A giant python and a lazy elephant talking in a Chinese restaurant

Bernard Bercu

University of Bordeaux, France

Conference en l'honneur de Fabrice Gamboa, Le Croisic, 2023

Plan

(1) Introduction
(2) On the Mittag-Leffler distribution
(3) Main results

- The diffusive regime
- The critical regime
- The superdiffusive regime

4. Connexion with the Chinese restaurant

Outline

(9) Introduction
(2) On the Mittag-Leffler distribution
(3) Main results

- The diffusive regime
- The critical regime
- The superdiffusive regime

4 Connexion with the Chinese restaurant

Elephants always remember where they have been

Steps of the lazy elephant

Steps of the lazy elephant
For all $n \geq 1$,

$$
\boldsymbol{X}_{n+1}=\left\{\begin{array}{ccc}
+\boldsymbol{X}_{\boldsymbol{k}} & \text { with probability } & \boldsymbol{p} \\
-\boldsymbol{X}_{\boldsymbol{k}} & \text { with probability } & \boldsymbol{q} \\
\mathbf{0} & \text { with probability } & \boldsymbol{r}
\end{array}\right.
$$

where the integer k is chosen uniformly at random among $\{1, \ldots, n\}$.

Positions of the lazy elephant random walk

The position of the lazy elephant at time $n \geq 0$ is given by

$$
S_{n+1}=S_{n}+X_{n+1}
$$

Another quantity of interest is given by the number of ones

$$
\Sigma_{n+1}=\Sigma_{n}+X_{n+1}^{2}
$$

We have almost surely for all $n \geq 1$,

$$
\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=a \frac{S_{n}}{n} \quad \text { and } \quad \mathbb{E}\left[X_{n+1}^{2} \mid \mathcal{F}_{n}\right]=b \frac{\Sigma_{n}}{n}
$$

where $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$,

$$
a=p-q, \quad b=p+q
$$

ERWS in the diffusive regime $p<3(1-r) / 4$.

Elephant random walk with stops in the diffusive regime

ERWS in the critical regime $p=3(1-r) / 4$.

Elephant random walk with stops in the critical regime

ERWS in the superdiffusive regime $p>3(1-r) / 4$.

Elephant random walk with stops in the superdiffusive regime

Our martingale approach

We have almost surely for all $n \geq 1$,

$$
\begin{aligned}
\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[S_{n}+X_{n+1} \mid \mathcal{F}_{n}\right]=\alpha_{n} S_{n}, \\
\mathbb{E}\left[\Sigma_{n+1} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[\Sigma_{n}+X_{n+1}^{2} \mid \mathcal{F}_{n}\right]=\beta_{n} \Sigma_{n},
\end{aligned}
$$

where

$$
\alpha_{n}=1+\frac{a}{n} \quad \text { and } \quad \beta_{n}=1+\frac{b}{n} .
$$

Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be the sequences given for $n \geq 2$ by

$$
a_{n}=\prod_{k=1}^{n-1} \alpha_{k}^{-1}=\frac{\Gamma(n) \Gamma(a+1)}{\Gamma(n+a)}, \quad b_{n}=\prod_{k=1}^{n-1} \beta_{k}^{-1}=\frac{\Gamma(n) \Gamma(b+1)}{\Gamma(n+b)}
$$

where Γ stands for the Euler Gamma function. Denote

$$
M_{n}=a_{n} S_{n} \quad \text { and } \quad N_{n}=b_{n} \Sigma_{n}
$$

Our martingale approach

Since

$$
a_{n+1}=\prod_{k=1}^{n} \alpha_{k}^{-1}=\alpha_{n}^{-1} a_{n}
$$

we have almost surely

$$
\begin{aligned}
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[a_{n+1} S_{n+1} \mid \mathcal{F}_{n}\right] \\
& =a_{n+1} \mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right] \\
& =a_{n+1} \alpha_{n} S_{n}, \\
& =M_{n} .
\end{aligned}
$$

It means that $\left(M_{n}\right)$ as well as $\left(N_{n}\right)$ are two martingale sequences.

A critical value

It is well-known that

$$
\lim _{n \rightarrow \infty} \frac{\Gamma(n+a)}{\Gamma(n) n^{a}}=1
$$

which implies that

$$
\lim _{n \rightarrow \infty} n^{a} a_{n}=\Gamma(a+1)
$$

Moreover,

$$
a<\frac{b}{2} \Longleftrightarrow p_{r}<3 / 4, \quad a=\frac{b}{2} \Longleftrightarrow p_{r}=3 / 4, \quad a>\frac{b}{2} \Longleftrightarrow p_{r}>3 / 4
$$

where the critical value

$$
p_{r}=\frac{p}{1-r}
$$

Definition

The ERW with stops is diffusive if $p_{r}<3 / 4$, critical if $p_{r}=3 / 4$, superdiffusive if $p_{r}>3 / 4$.

Outline

(1) Introduction
(2) On the Mittag-Leffler distribution
(3) Main results

- The diffusive regime
- The critical regime
- The superdiffusive regime

4. Connexion with the Chinese restaurant

The Mittag-Leffler function was introduced at the beginning of the last century. It is defined, for all $z \in \mathbb{C}$, by

$$
E_{\alpha}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(1+n \alpha)}
$$

where α is a positive real parameter and Γ stands for the Euler Gamma function. One can observe that $E_{1}(z)=\exp (z)$ while $E_{2}\left(-z^{2}\right)=\cos (z)$.

Definition

A positive random variable X has a Mittag-Leffler distribution with parameter $\alpha \in[0,1]$ if its Laplace transform is given, for all $t \in \mathbb{R}$, by

$$
\mathbb{E}[\exp (t X)]=E_{\alpha}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{\Gamma(1+n \alpha)}
$$

Consequently, for any integer $m \geq 1$,

$$
\mathbb{E}\left[X^{m}\right]=\frac{m!}{\Gamma(1+m \alpha)}
$$

The Mittag-Leffler distribution satisfies the Carleman's condition which means that it is characterized by its moments. If $X \sim \mathcal{M} \mathcal{L}(\alpha)$ with $0<\alpha<1$, its probability density function is given by

$$
f_{\alpha}(x)=\frac{1}{\pi \alpha} \sum_{n=0}^{\infty} \Gamma(1+\alpha n) \sin (\alpha n \pi) \frac{(-x)^{n-1}}{n!} I_{\{x>0\}}
$$

The only simplification occurs for $\alpha=1 / 2$,

$$
f_{1 / 2}(x)=\frac{1}{\sqrt{\pi}} \exp \left(-\frac{x^{2}}{4}\right) \mathrm{I}_{\{x>0\}}
$$

It means that $\mathcal{M} \mathcal{L}(1 / 2)$ coincides with the distribution of $|Y|$ where Y has a Gaussian $\mathcal{N}(0,2)$ distribution.

A keystone lemma

Lemma

Whatever the values of the parameters p, q in $[0,1]$ and r in $] 0,1[$, we have the almost sure convergence

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{1-r}} \Sigma_{n}=\Sigma \quad \text { a.s. }
$$

where $\Sigma \sim \mathcal{M} \mathcal{L}(1-r)$. Consequently, Σ is positive with probability one. Moreover, this convergence holds in \mathbb{L}^{m} for any integer $m \geq 1$,

$$
\mathbb{E}\left[\Sigma^{m}\right]=\frac{m!}{\Gamma(1+m(1-r))}
$$

Outline

(1) Introduction

2 On the Mittag-Leffler distribution

(3) Main results

- The diffusive regime
- The critical regime
- The superdiffusive regime

4. Connexion with the Chinese restaurant

Strong law of large numbers

We focus our attention on the diffusive regime where

$$
p_{r}<\frac{3}{4}
$$

Theorem

We have the almost sure convergence

$$
\lim _{n \rightarrow \infty} \frac{1}{n} S_{n}=0 \quad \text { a.s. }
$$

Asymptotic normality

Denote by σ_{r}^{2} the asymptotic variance

$$
\sigma_{r}^{2}=\frac{1-r}{3(1-r)-4 p} .
$$

Theorem

We have the asymptotic normality

$$
\frac{S_{n}}{\sqrt{\Sigma_{n}}} \xrightarrow{\mathcal{L}} \mathcal{N}\left(\mathbf{0}, \sigma_{r}^{2}\right) .
$$

Moreover, we also have

$$
\frac{S_{n}}{\sqrt{n^{1-r}}} \xrightarrow{\mathcal{L}} \sqrt{\Sigma^{\prime}} \mathcal{N}\left(0, \sigma_{r}^{2}\right)
$$

where Σ^{\prime} is independent of the Gaussian $\mathcal{N}\left(0, \sigma_{r}^{2}\right)$ random variable and Σ^{\prime} has a Mittag-Leffler distribution with parameter 1 - r.

Strong law of large numbers

Let's talk now on the critical regime where

$$
p_{r}=\frac{3}{4}
$$

Theorem

We have the almost sure convergence

$$
\lim _{n \rightarrow \infty} \frac{1}{n} S_{n}=0 \quad \text { a.s. }
$$

Asymptotic normality

Theorem

We have the asymptotic normality

$$
\frac{S_{n}}{\sqrt{\Sigma_{n} \log \Sigma_{n}}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1) .
$$

Moreover, we also have

$$
\frac{S_{n}}{\sqrt{n^{1-r} \log n}} \xrightarrow{\mathcal{L}} \sqrt{(1-r) \Sigma^{\prime}} \mathcal{N}(0,1)
$$

where Σ^{\prime} is independent of the Gaussian $\mathcal{N}(0,1)$ random variable and Σ^{\prime} has a Mittag-Leffler distribution with parameter 1 - r.

Almost sure convergence

We focus on the more attractive superdiffusive regime where

$$
p_{r}>\frac{3}{4}
$$

Theorem

We have the almost sure convergence

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2 p+r-1}} S_{n}=L \quad \text { a.s. }
$$

where L is a non-degenerate random variable. Moreover, this convergence holds in \mathbb{L}^{m} for any integer $m \geq 1$,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|\frac{S_{n}}{n^{2 p+r-1}}-L\right|^{m}\right]=0
$$

Corollary

The first four moments of L are given by

$$
\begin{aligned}
\mathbb{E}[L] & =\frac{2 s-1}{(2 p+r-1) \Gamma(2 p+r-1)}, \\
\mathbb{E}\left[L^{2}\right] & =\frac{1}{(4 p+3(r-1)) \Gamma(2(2 p+r-1))}, \\
\mathbb{E}\left[L^{3}\right] & =\frac{2 p(2 s-1)}{(2 p+r-1)(4 p+3(r-1)) \Gamma(3(2 p+r-1))}, \\
\mathbb{E}\left[L^{4}\right] & =\frac{6\left(8 p^{2}-4 p(1-r)-(1-r)^{2}\right)}{(8 p+5(r-1))(4 p+3(r-1))^{2} \Gamma(4(2 p+r-1))}
\end{aligned}
$$

Outline

(1) Introduction

2 On the Mittag-Leffler distribution

(3) Main results

- The diffusive regime
- The critical regime
- The superdiffusive regime

4. Connexion with the Chinese restaurant

Pitman's Chinese restaurant

At stage n, k tables are occupied in the Chinese restaurant, one with a giant python and a lazy elephant \odot

Pitman's Chinese restaurant

(1) The next customer goes to an occupied table i with probability

$$
\frac{n_{i}-b}{n+\theta} .
$$

(2) The next customer goes to a new table with probability

$$
\frac{\theta+b k}{n+\theta}
$$

Assume that $b+\theta>0$ and $0<b<1$. Denote by Σ_{n} the number of tables in the Chinese restaurant.

Theorem (Pitman, PTRF 1995)

We have the almost sure convergence

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\boldsymbol{b}}} \Sigma_{n}=\Sigma \quad \text { a.s. }
$$

where the distribution of Σ is closely related with the $\mathcal{M} \mathcal{L}(b)$.

Connexion with the Chinese restaurant

