A giant python and a lazy elephant talking in a Chinese restaurant

Bernard Bercu

University of Bordeaux, France

Conference en l'honneur de Fabrice Gamboa, Le Croisic, 2023

On the Mittag-Leffler distribution

3 Main results

- The diffusive regime
- The critical regime
- The superdiffusive regime

4 Connexion with the Chinese restaurant

Outline

Introduction

2 On the Mittag-Leffler distribution

Main results

- The diffusive regime
- The critical regime
- The superdiffusive regime

4 Connexion with the Chinese restaurant

Elephants always remember where they have been

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のなの

Steps of the lazy elephant

Steps of the lazy elephant

For all $n \ge 1$,

	$(+X_k)$	with probability	p ,
$X_{n+1} = \langle$	- X _k	with probability	q ,
	0	with probability	r ,

where the integer k is chosen uniformly at random among $\{1, \ldots, n\}$.

Positions of the lazy elephant random walk

The position of the lazy elephant at time $n \ge 0$ is given by

 $\mathbf{S}_{n+1} = \mathbf{S}_n + \mathbf{X}_{n+1}.$

Another quantity of interest is given by the number of ones

 $\boldsymbol{\Sigma}_{n+1} = \boldsymbol{\Sigma}_n + \boldsymbol{X}_{n+1}^2.$

We have almost surely for all $n \ge 1$,

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = a \frac{S_n}{n} \quad \text{and} \quad \mathbb{E}[X_{n+1}^2|\mathcal{F}_n] = b \frac{\Sigma_n}{n}$$
where $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$,

$$a = p - q,$$
 $b = p + q.$

ERWS in the diffusive regime p < 3(1 - r)/4.

Elephant random walk with stops in the diffusive regime

ERWS in the critical regime p = 3(1 - r)/4.

Elephant random walk with stops in the critical regime

ERWS in the superdiffusive regime p > 3(1 - r)/4.

Our martingale approach

We have almost surely for all $n \ge 1$,

$$\begin{split} \mathbb{E}[S_{n+1}|\mathcal{F}_n] &= \mathbb{E}[S_n + X_{n+1}|\mathcal{F}_n] = \alpha_n S_n, \\ \mathbb{E}[\Sigma_{n+1}|\mathcal{F}_n] &= \mathbb{E}[\Sigma_n + X_{n+1}^2|\mathcal{F}_n] = \beta_n \Sigma_n, \end{split}$$

where

$$\alpha_n = 1 + \frac{a}{n}$$
 and $\beta_n = 1 + \frac{b}{n}$.

Let (a_n) and (b_n) be the sequences given for $n \ge 2$ by

$$a_n = \prod_{k=1}^{n-1} \alpha_k^{-1} = \frac{\Gamma(n)\Gamma(a+1)}{\Gamma(n+a)}, \quad b_n = \prod_{k=1}^{n-1} \beta_k^{-1} = \frac{\Gamma(n)\Gamma(b+1)}{\Gamma(n+b)}$$

where $\boldsymbol{\Gamma}$ stands for the Euler Gamma function. Denote

 $M_n = a_n S_n$ and $N_n = b_n \Sigma_n$.

Our martingale approach

Since

$$\boldsymbol{a}_{n+1} = \prod_{k=1}^{n} \alpha_k^{-1} = \alpha_n^{-1} \boldsymbol{a}_n,$$

we have almost surely

$$\mathbb{E}[M_{n+1}|\mathcal{F}_n] = \mathbb{E}[a_{n+1}S_{n+1}|\mathcal{F}_n],$$

$$= a_{n+1}\mathbb{E}[S_{n+1}|\mathcal{F}_n],$$

$$= a_{n+1}\alpha_n S_n,$$

$$= M_n.$$

It means that (M_n) as well as (N_n) are two martingale sequences.

A critical value

It is well-known that

$$\lim_{n\to\infty}\frac{\Gamma(n+a)}{\Gamma(n)n^a}=1$$

which implies that

$$\lim_{n\to\infty}n^a a_n = \Gamma(a+1).$$

Moreover,

$$a < rac{b}{2} \Longleftrightarrow p_r < 3/4, \quad a = rac{b}{2} \Longleftrightarrow p_r = 3/4, \quad a > rac{b}{2} \Longleftrightarrow p_r > 3/4$$

where the critical value

$$p_r=\frac{p}{1-r}.$$

Definition

The ERW with stops is **diffusive** if $p_r < 3/4$, **critical** if $p_r = 3/4$, **superdiffusive** if $p_r > 3/4$.

Bernard Bercu

Outline

Introduction

2 On the Mittag-Leffler distribution

Main results

- The diffusive regime
- The critical regime
- The superdiffusive regime

4 Connexion with the Chinese restaurant

æ

The Mittag-Leffler function was introduced at the beginning of the last century. It is defined, for all $z \in \mathbb{C}$, by

$$\mathsf{E}_{\alpha}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(1+n\alpha)}$$

where α is a positive real parameter and Γ stands for the Euler Gamma function. One can observe that $E_1(z) = \exp(z)$ while $E_2(-z^2) = \cos(z)$.

Definition

A positive random variable X has a Mittag-Leffler distribution with parameter $\alpha \in [0, 1]$ if its Laplace transform is given, for all $t \in \mathbb{R}$, by

$$\mathbb{E}[\exp(tX)] = E_{\alpha}(t) = \sum_{n=0}^{\infty} \frac{t^n}{\Gamma(1+n\alpha)}$$

Consequently, for any integer $m \ge 1$,

$$\mathbb{E}[X^m] = \frac{m!}{\Gamma(1+m\alpha)}.$$

The Mittag-Leffler distribution satisfies the **Carleman's condition** which means that it is characterized by its moments. If $X \sim M\mathcal{L}(\alpha)$ with $0 < \alpha < 1$, its probability density function is given by

$$f_{\alpha}(\boldsymbol{x}) = \frac{1}{\pi\alpha} \sum_{n=0}^{\infty} \Gamma(1+\alpha n) \sin(\alpha n\pi) \frac{(-\boldsymbol{x})^{n-1}}{n!} I_{\{\boldsymbol{x}>0\}}.$$

The only simplification occurs for $\alpha = 1/2$,

$$f_{1/2}(x) = rac{1}{\sqrt{\pi}} \exp{\left(-rac{x^2}{4}
ight)} I_{\{x>0\}}.$$

It means that $\mathcal{ML}(1/2)$ coincides with the distribution of |Y| where Y has a Gaussian $\mathcal{N}(0,2)$ distribution.

A keystone lemma

Lemma

Whatever the values of the parameters *p*, *q* in [0, 1] and *r* in]0, 1[, we have the almost sure convergence

$$\lim_{n\to\infty}\frac{1}{n^{1-r}}\Sigma_n=\Sigma \qquad a.s.$$

where $\Sigma \sim \mathcal{ML}(1 - r)$. Consequently, Σ is positive with probability one. Moreover, this convergence holds in \mathbb{L}^m for any integer $m \ge 1$,

$$\mathbb{E}[\Sigma^m] = \frac{m!}{\Gamma(1+m(1-r))}.$$

Outline

Introduction

2 On the Mittag-Leffler distribution

Main results

- The diffusive regime
- The critical regime
- The superdiffusive regime

4 Connexion with the Chinese restaurant

Strong law of large numbers

We focus our attention on the diffusive regime where

$$p_r < rac{3}{4}.$$

Theorem

We have the almost sure convergence

$$\lim_{n\to\infty}\frac{1}{n}S_n=0 \qquad a.s.$$

Asymptotic normality

Denote by σ_r^2 the asymptotic variance

$$\sigma_r^2 = \frac{1-r}{3(1-r)-4p}$$

Theorem

We have the asymptotic normality

$$rac{oldsymbol{S}_{oldsymbol{n}}}{\sqrt{oldsymbol{\Sigma}_{oldsymbol{n}}}} \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(oldsymbol{0},\sigma_{oldsymbol{r}}^2).$$

Moreover, we also have

$$\frac{S_n}{\sqrt{n^{1-r}}} \xrightarrow{\mathcal{L}} \sqrt{\Sigma'} \mathcal{N}(\mathbf{0}, \sigma_r^2)$$

where Σ' is independent of the Gaussian $\mathcal{N}(0, \sigma_r^2)$ random variable and Σ' has a Mittag-Leffler distribution with parameter 1 - r.

Bernard Bercu

The critical regime

Strong law of large numbers

Let's talk now on the critical regime where

$$p_r=rac{3}{4}.$$

Theorem

We have the almost sure convergence

$$\lim_{n\to\infty}\frac{1}{n}S_n=0 \qquad a.s.$$

Asymptotic normality

Theorem

We have the asymptotic normality

$$\frac{S_n}{\sqrt{\Sigma_n \log \Sigma_n}} \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0,1).$$

Moreover, we also have

$$\frac{S_n}{\sqrt{n^{1-r}\log n}} \xrightarrow{\mathcal{L}} \sqrt{(1-r)\Sigma'} \mathcal{N}(0,1)$$

where Σ' is independent of the Gaussian $\mathcal{N}(0, 1)$ random variable and Σ' has a Mittag-Leffler distribution with parameter 1 - r.

Almost sure convergence

We focus on the more attractive superdiffusive regime where

 $p_r>rac{3}{4}.$

Theorem

We have the almost sure convergence

$$\lim_{n\to\infty}\frac{1}{n^{2p+r-1}}S_n=L \qquad a.s.$$

where L is a non-degenerate random variable. Moreover, this convergence holds in \mathbb{L}^m for any integer $m \ge 1$,

$$\lim_{n\to\infty}\mathbb{E}\Big[\Big|\frac{S_n}{n^{2p+r-1}}-L\Big|^m\Big]=0.$$

Corollary

The first four moments of L are given by

$$\begin{split} \mathbb{E}[L] &= \frac{2s-1}{(2p+r-1)\Gamma(2p+r-1)},\\ \mathbb{E}[L^2] &= \frac{1}{(4p+3(r-1))\Gamma(2(2p+r-1))},\\ \mathbb{E}[L^3] &= \frac{2p(2s-1)}{(2p+r-1)(4p+3(r-1))\Gamma(3(2p+r-1))},\\ \mathbb{E}[L^4] &= \frac{6(8p^2-4p(1-r)-(1-r)^2)}{(8p+5(r-1))(4p+3(r-1))^2\Gamma(4(2p+r-1))}. \end{split}$$

< < >> < <</>

æ

Outline

Introduction

2 On the Mittag-Leffler distribution

Main results

- The diffusive regime
- The critical regime
- The superdiffusive regime

4 Connexion with the Chinese restaurant

Pitman's Chinese restaurant

At stage *n*, *k* tables are occupied in the Chinese restaurant, one with a giant python and a lazy elephant \bigcirc

Pitman's Chinese restaurant

The next customer goes to an occupied table i with probability

$$\frac{n_i-b}{n+\theta}.$$

The next customer goes to a new table with probability

$$\frac{\theta+bk}{n+\theta}.$$

Assume that $b + \theta > 0$ and 0 < b < 1. Denote by Σ_n the number of tables in the Chinese restaurant.

Theorem (Pitman, PTRF 1995)

We have the almost sure convergence

$$\lim_{n\to\infty}\frac{1}{n^b}\Sigma_n=\Sigma \qquad a.s.$$

where the distribution of Σ is closely related with the $\mathcal{ML}(b)$.

Connexion with the Chinese restaurant

!!!! Happy Birthday Fabrizio !!!!

æ