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Abstract

Reducing the ecological footprint has become a priority for many industries, including the railway
industry which is one of the most energy-intensive industries. Indeed, this industry faces two
paradoxical needs ; on the first hand, it must decrease its energy consumption, meeting both an
environmental goal and a financial objective, and on the other hand, it must not only maintain
but increase the circulation of train, thus allowing a larger part of the population to use the
most ecological means of land transport. In order to respond to this double problem, multiple
actions can be undertaken, and the present work focuses on the driver control. Historically, this
problem has been handled using speed profile along the track [2]. Although this concept may
be relevant as it allows one to avoid modelling control law, it is not possible to use such profile
directly in industry as the speed is not an input to the train.

In addition to the previous goal, which can be described as the minimization of the energy
consumption, the driver must respect multiple constraints like punctuality, safety and comfort.
As the dynamic and energy behaviors rely on non-linear differential equations, the problem can
be considered as a black-box one. Finally, uncertainties exist both in the input parameters of
the train and in the equations which are simplifications of the physic. This problem, included
in the family of the black-box constrained optimization under uncertainties, has been treated
previously and it has been shown that for each trip about 25% of energy could be saved [3]. The
main weakness is the time needed to optimize the driver command, as it could require multiple
days to converge. Accelerating this resolution in order to be able to adapt the control commands
in real time is a major challenge of the work presented here.

Beyond a “simple” immediacy and in a first time, real-time will allow the control to use the
measures continuously acquired by the multiple sensors placed on the train notably in the
framework of an automatic train operation. Using these new data, it would be possible to refine
the model parameters as the train moves along the railway track and therefore better adjust the
commands. Some environmental parameters, such as wind speed, which could only be predicted
in previous work, could also be better considered in the method. Moreover, real-time is expected
to allow us to handle unexpected one-off events such as slowdowns or late departures to ensure
optimal energy consumption in any context.
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As the system under study is the train, the notion of real time is linked to characteristic calcu-
lation time, the magnitude of which is approximately 1 µs compared to the initial state of art,
the magnitude of which is approximately 1 day.

To this end, this work will focus on building a new solver which will take well-represented input
allowing fast calculation. Starting from a refined expensive optimization, it will therefore be
possible to make real time adjustments. The whole method will use experimental data to update
parameters.

From this use case, this work develops an original method for the real-time optimal control under
uncertainties that is able to learn from experimental measures to adapt to random phenomena.
Finally, this work could also be used to propose a new calculation of the regulatory margin using
amulti-objective optimization between punctuality and energy consumption ; i.e. a journey could
be optimized considering that the travel time is not a constraint but a new objective [1].
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Abstract

Engineering components/systems are subject to degradation of various forms that can adversely
affect their intended performance. In an effort to optimize associated maintenance, moni-
toring information can be harnessed via the deployment of sensors on the degrading compo-
nents/systems. An optimal maintenance plan should optimally balance the risk of failure and
the benefit of extending the life-cycle of the component/system. The maintenance plan needs to
determine the type of repair action as well as the time for performing a preventive repair action.

Prognostics can support such tasks by delivering an estimate of the remaining useful life (RUL)
of a degrading component/system utilizing monitoring data [3]. In the modern data-rich engi-
neering landscape, prognostics solutions are commonly based on the use of data-driven methods,
e.g., artificial intelligence (AI) approaches or statistical process-based approaches. Data-driven
prognostic schemes have paved the way for establishment of the data-driven predictive main-
tenance (PdM) paradigm [3]. Multiple sources of uncertainty enter the process of prognostics.
Therefore, PdM can be formulated as a problem for decision-making under uncertainty.

In this work, PdM decision policies are discussed for planning preventive replacement actions.
These rely on input from data-driven prognostic algorithms. We employ two distinct PdM
policies of varying complexity, and we rigorously investigate them in terms of optimality of the
resulting decisions. The first is a simple heuristic PdM policy, which operates on the basis
of prognostics outcomes that are expressed in the form of probability of RUL exceedance in
certain decision-relevant time intervals. The second investigated PdM policy seeks to account
for the full probability distribution function (PDF) of the RUL predictions, and is somewhat
more complex. Both PdM policies are evaluated via the quantification of the long-run expected
maintenance cost per unit time [2]. Based on this quantification, we propose a metric that
assesses data-driven prognostic algorithms according to the PdM decisions that are triggered by
their outcome. This decision-oriented metric can provide the basis for a paradigm shift when it
comes to optimizing the training process of prognostic algorithms (e.g., hyperparameter tuning)
from a prediction-based training approach to a decision-based one.

We numerically investigate the above on an actual case study by employing a widely used prog-
nostic data set related to degrading turbofan engines [1]. Following the flowchart presented
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Figure 1: Flowchart of the adopted data-driven PdM decision process
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Figure 2: Evaluation of the decision-oriented metric M for different cost ratios. Left panel: simple
heuristic PdM policy. Right panel: PdM policy which accounts for the PDF of the RUL predictions.

in Fig. 1, we train data-driven prognostic algorithms of different nature on this data set for
performing RUL predictions, which we subsequently provide as input to the two PdM policies
mentioned above. The four investigated models are: i) Long Short-Term Memory (LSTM) net-
works for classification, ii) Bayesian Networks (BN) classifiers, iii) Decision Trees (DT) classifiers
and iv) Bayesian filtering of an exponential degradation model (EXP) for regression. Fig. 2 plots
the values of the decision-oriented metric M that we obtain for different assumed Cp/Cc cost
ratios with each of the two investigated PdM policies. Cp denotes the cost of a preventive
replacement action, while Cc is the cost of a corrective replacement action, with Cc > Cp. A
smaller value of the metric M is preferable. For this data set, and for the specific prognostic
models that we implement, the heuristic PdM policy is found to lead to better decisions than
the alternative more involved PdM policy. The LSTM prognostic classifier seems to deliver the
best performance with respect to PdM decision-making on preventive replacement planning.
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1 Institut de mathématiques de Toulouse, Paul Sabatier University,
{baalu-belay.ketema,francesco.costantino,fabrice.gamboa}@univ-toulouse.fr

2 EDF R&D,
{roman.sueur,nicolas.bousquet,bertrand.iooss}@edf.fr

Abstract

EDF wishes to study the sensitivity of a real-valued numerical code G, coming from the domain
of nuclear safety, where the inputs X = (X1, ..., Xd) are uncertain physical quantities that are
seen as random variables. This procedure aims to justify that a certain quantile of the output
Y = G(X) does not go beyond a certain regulatory threshold [2]. The specificity of this problem
is that the input distribution ofX is itself uncertain. Our goal will be to perform “perturbations”
on the input X of G and compute robustness indices on a quantile of Y to understand how
robust the quantile is to “perturbations” of X. The notion of “perturbation” will be defined
using Information Geometry i.e. using the distance induced by the Fisher matrices on the
parameter set of possible distributions of X. More precisely, our goal is to identify parameters
corresponding to the distributions that maximize (or minimize) the robustness indices for a
given level of perturbation.

This is an optimization problem on a set of probability distributions that, when endowed with
the Fisher information matrices, becomes a Riemannian manifold. In addition, due to the
complexity of the numerical code G, the distribution of Y cannot be determined analytically
therefore we can only estimate it with some statistical sampling method. To sum up, we are
dealing with a stochastic optimization problem on a Riemannian manifold.

The one dimensional case of the Gaussian distribution has been studied in [1] as well as during
my master’s internship. We built an algorithm based on the usual Riemannian gradient descent
method that we adapted to the specific case of our problem. We applied this algorithm to
optimize toy functions on a given closed ball, see Figure 1 and 2 for illustration. For what
follows, our goal is to study more general families of distributions like the Gaussian distribution
in higher dimensions or more generally, exponential families, and try to identify the optimization
algorithms that are more suited to our problem.

In this communication, I would first like to explain briefly where our mathematical problem
comes from and why we decided to formulate it in this particular way. Then, I will briefly
present what I have previously been working on during my master’s degree internship where
we have made moderate simplifications to the initial mathematical problem to give ourselves an
achievable goal. Then, I will explain what we were able to do in the first few months of PhD
and lastly, I will mention the short and medium-term objectives that we plan to achieve.
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Figure 1: Descent trajectories for f(z) = 5 cos(x) sin(y) + x2 + (y − 10)2 on a closed ball.

Figure 2: Descent trajectories for h(z) := sin(x)2 + y2 sin(y) on a closed ball.
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Abstract

Neutron noise analysis [4] describes a set of techniques used in nuclear safeguards and nuclear
security to identify an unknown fissile material based on the temporal correlations of the de-
tected neutrons. The observations are often noisy due to the stochastic nature of the underlying
physical processes, which makes the resolution of this inverse problem complex. Moreover, the
uncertainty quantification of the estimation of the fissile material parameters has not been stud-
ied thoroughly, though it is crucial for such an ill-posed inverse problem. On top of this, the
analytical direct model widely used to describe neutron correlations is based on strong physical
assumptions, which are never met in a real-world scenario. The impact of these simplifications
should be discussed and quantified. Overall, the knowledge of the quality of the predictions is
crucial for the decision makers.
This work addresses dual objectives. First of all, surrogate models specifically designed for mul-
tiple correlated outputs are built to extend and improve the biased analytical model currently
used, while providing a reliable quantification of the errors associated with the predictions. The
surrogate models are based on multi-fidelity [6], multi-output Gaussian process regression. Since
the observations are strongly correlated, the Gaussian processes for the individual outputs must
not be taken independent. Instead, a Linear Model of Coregionalization [2] and Convolutional
Gaussian processes [1] are investigated to build the surrogate model. The performance of the
surrogate models are evaluated with different metrics, and the coverage probabilities are esti-
mated to guarantee the reliability of the predictions and their uncertainty quantification.
In order to cope with the inherent limitations of Gaussian process surrogate models, this work
also investigates other approaches to build efficient surrogate models such as Bayesian Neural
Networks [7].
Finally, the inverse problem is solved with a Bayesian approach which takes into account the co-
variances of the measurements and the predictive means and covariances of the Gaussian process
surrogate model. Thus, the general methodology presented in this work takes into account both
sources of error, measurement noise and model bias [5]. The resulting posterior distribution
more accurately reflects the inferred knowledge about the material properties. The Bayesian
inference also allows to effortlessly include additional information (gamma correlations, expert
knowledge) into the posterior distribution. To highlight the improvements brought up for neu-
tron noise analysis applications, this method is applied to a specific test case coming from a
neutron multiplicity benchmark [3].
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Abstract

Thanks to falling costs and high physical performances, Lithium-ion batteries are currently the
solution of choice for many applications, including the thriving markets of electric vehicles and
smart grids. However, electric batteries age with time. Depending on their composition and
conditions of use, their performance degrades until they are considered unfit for their designed
use. For manufacturers, knowledge of this aging process is a essential issue [1], since it is a
pivotal element in determining its price.

To quantify the aging behavior of a new kind of battery, manufacturers perform a series of aging
tests in controlled experimental conditions on a batch of batteries. These tests are expensive and
time-consuming, so only few batteries are generally tested. The degradation is quantified thanks
to state of health (SoH) indicators, typically capacity or internal resistance. Fig.1 displays an
example of such data, from a dataset provided by the Aachen university [2].

Our objective is to predict the average degradation of the state of health. As in the example of
the Aachen dataset, we consider a setting of identical batteries, tested in similar experimental
conditions, such that we characterize the typical degradation of a battery design at this experi-
mental condition. Moreover, as an essential point, predictions have to include an uncertainties
quantification. This is particularly important for manufacturers in order to assess the financial
risk related to performance guarantees.

Related to uncertainties, a significant phenomenon in battery health degradation is the inter-
battery variability. Considering a batch of batteries with a similar design and cycled at identical
conditions, there is often an important range of SoH at a fixed time. Besides, we can see in Fig.
1 that this uncertainty increases with time: at cycle 100, the capacity range is approximately 1%
of the nominal capacity, whereas at cycle 1300, it is close to 20%. This effect is often observed
by manufacturers and is not specific to this dataset. The main challenge in this work is to model
the inter-battery variability accurately.

Gaussian processes have already been used in this context, see for example [3]. This approach
is well suited to the problematic; as a non-parametric Bayesian method, Gaussian processes can
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Figure 1: Capacity degradation curves of the Aachen dataset

fit complex functions while naturally providing confidence intervals. Moreover, they are known
to perform well even when little data are available which is generally the case.

However, Gaussian processes regression often imposes constraints on uncertainties with a sta-
tionary prior, which supposes a constant variance. In our context, this is too restrictive since, as
we have seen, the variance of the state of health indicator commonly increases with time. That is
why we proposed an extended model relying on the Chained Gaussian processes framework [4],
an approximated model based on variationnal inference. Coupling several Gaussian processes,
this model allows a simultaneous estimate of the time evolution of the mean and the variance.
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Abstract

Thanks to the continuous increase of computational resources, high-fidelity numerical simula-
tions are becoming more affordable, in seismology as in other fields. Despite the amount of
work devoted to optimizing numerical schemes, their computational cost in complex settings
prohibits uncertainty quantification analyses. Therefore, alternative methods are needed to ex-
plore the uncertainties in the simulation parameters and, more importantly, their influence on
the simulation results.

This study uses a High-Performance Computing (HPC) code based on the Spectral Element
Method, SEM3D, to solve the 3-dimensional (3D) wave propagation equation [4]. We focus on
the properties of the propagation domain (i.e. the wave velocities) as the primary source of
uncertainty. Indeed, geological parameters have a crucial influence on the generated ground
motion. Furthermore, they are described by a large number of variables (104 to 108).

The geological uncertainties were modeled with random fields. A von Karman correlation model
was chosen and several correlation lengths and coefficients of variation were explored to build
a database of 100,000 3D heterogeneous geological fields. Our database is publicly available
at https://doi.org/10.5281/zenodo.6983053. Due to the curse of dimensionality inherent
to the three dimensions, more than 32,000 variables are needed to describe each sample of the
geological database. Therefore, reducing this number of variables is necessary to characterize
the relationship between the geological parameters and the surface ground motion.

We compared the performances of the Principal Component Analysis (PCA) and an auto-
encoder neural network named 3D UNet [1] to perform the dimensionality reduction. Although
the PCA treats 3D fields as 1D vectors, the PCA basis shows robust spatial coherency. To reflect
that, we called the basis elements eigengeologies. We also found that the eigengeology basis was
expressive enough to represent geological fields very different from those in the original database,
for example, 3D domains containing sedimentary basins. Despite the greater complexity of the
3D UNet neural network, we could not reach a larger dimensionality reduction than the PCA.
In addition, the latent space elements (analogs of the PCA basis) were less interpretable.

Concerning the reduction percentage, 1000 PCA components were sufficient to reconstruct 3D
geological fields with very good accuracy. The Root Mean Square Error was 90m/s, correspond-
ing to 8.6% (resp. 2%) of the minimum (resp. maximum) velocity value [3]. To study the
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Figure 1: 99th percentile of the frequency-dependent GOF for the East-West velocity recorded by
256 virtual sensors located at the surface of 250 geological fields. For each field, the GOF is assessed
between the reference ground motion and the one obtained after the PCA reconstruction with the
specified number of PCA components. Computational cost of the HPC simulations: 96,000h CPUs.

impact of the PCA on ground motion, we randomly chose 250 geological fields and simulated
the propagation of seismic waves through each of them. Then, each geological field was decom-
posed on the eigengeology basis (with 125 to 2000 PCA components). By propagating seismic
waves through each reconstructed field, we showed that the ground motion was very close to
the reference one when using more than 1000 PCA components. Figure 1 indeed depicts GOF
larger than 8 for all frequencies.

In conclusion, the PCA led to a dimensionality reduction factor larger than 32 for all 3D ge-
ological fields while ensuring a good reconstruction accuracy for i) the geological field and ii)
the resulting ground motion. This shows that the PCA components can be used instead of the
entire 3D fields to characterize ground motion in future uncertainty analyses.
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Abstract 

In a context of energy and environmental renovation, major advances are expected and 

necessary in the building sector. For existing buildings, the reduction of energy consumption 

requires a better assessment of the energy performance of buildings and its improvement 

through rehabilitation actions. Particular attention must be paid to the evaluation and in-situ 

control of the thermal performance of buildings before and after a rehabilitation action in order 

to prevent any defects and thus obtain a building with the expected performance. The thermal 

insulation of buildings is a key factor to guarantee the thermal comfort of the occupants and to 

achieve high-energy savings. Thus, the control of the thermal resistance of walls (indicator of 

the insulation level) by in-situ measurement on existing and new buildings or during renovation 

is a growing demand. Although many of the techniques in the literature are at the building scale 

[1-2], we have chosen to focus on the wall scale in order to propose a solution that is easily 

deployable, minimally intrusive and low sensitive to external weather conditions. 

We propose an interdisciplinary technical solution combining physical modeling, statistical 

modeling, numerical simulation and measurements for a better in-situ characterization of the 

energy performance of conventional and bio-based walls. 

To identify the thermal resistance of highly insulated and bio-based walls, both experimental 

and numerical works will be investigated. Concerning the experimental part, an active 

solicitation on the inside face of the wall is retained to perform an accelerated identification 

(within 72h) and to limit the influence of weather conditions. Physical modelling and numerical 

simulations are of particular interest for the “Optimal Experimental Design” stage [3] and for 

the identification process using inverse modelling techniques. As we observed in the previous 

ANR project named “RESBATI”, simplified physical model like RC or 1D heat equation are 

not suitable for an accurate identification of the thermal resistance for highly insulated walls 

and for some wall typologies [4, 5]. It is due to transverse heat fluxes in the wall which are not 

taken into account in these models.  

mailto:hadi.nasser@univ-eiffel.fr


 

Consequently, to extend previous works to highly insulated and bio-based walls, more 

sophisticated physical models are to be considered. We will study 2D/2D axi-symmetrical 

thermal simulations and hygro-thermal physical models. Moreover, the computational time 

being more expensive for these direct simulations, we propose to use Reduced Basis Techniques 

to ensure real-time simulations. We focus on non-intrusive reduced basis methods which are 

particularly adapted to interface with existing and commercial softwares. Then, we will take 

advantage of the real-time simulations in a Bayesian inversion framework to identify the 

thermal resistance. A Bayesian sequential multi-fidelity statistical approach will be developed 

to automatically select the most appropriate version of the physical or surrogate model at each 

iteration of the inversion algorithm. This model operates the best compromise between the 

computational cost and the expected uncertainty reduction to properly identify the thermal 

resistance of a given wall. For that, both measurement and modelling errors will be estimated 

and their associated uncertainties will be propagated into the inverse process. We can underline 

that the influence of model error in the inversion process has been studied in previous works 

[5, 6]. Several directions can be investigated to minimize the impact of this model error on the 

inversion results at a given total computational cost. For instance, Bayesian sequential strategies 

inspired by those presented in [7] can be implemented to automatically select the level of 

fidelity but also the position where to evaluate the code to optimize an uncertainty reduction 

criterion on the quantities of interest. 

By considering these uncertainties, the objective is to avoid biased identification due to over-

fitting. Furthermore, the use of Bayesian methods will lead to a robust confidence interval on 

the identified thermal resistance. 
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Abstract

Physics-Informed Neural Networks (PINNs) [5] have gained much attention in various fields of
engineering thanks to their capability of incorporating physical laws into the models. PINNs
integrate the physical constraints by minimizing the partial differential equations (PDEs) resid-
uals on a set of collocation points. The distribution of these collocation points appears to have
a huge impact on the performance of PINNs [3] and the assessment of the sampling methods
for these points is still an active topic. To the best of the authors knowledge, the first work
that showed the improvement of PINNs performance by modifying the set of collocation points
is introduced in [1]. This work proposed the Residual-based Adaptive Refinement (RAR) that
adds new training collocation points to the location where the PDE residual errors are large.
RAR has been proved to be very efficient to increase the accuracy of the prediction but however
leads to an uncontrollable amount of collocation points and computational cost at the end of
the training process.

Motivated by this work, we propose a Fixed-Budget Online Adaptive Mesh Learning (FBOAML)
[2, 4] method, which decomposes the domain into sub-domains, for training collocation points
based on local maxima and local minima of the PDEs residuals so that the number of total
collocation points remains the same during the training. The stopping criteria is based on a data
set of reference, which leads to an adaptive number of iterations for each specific problem. The
effectiveness of FBOAML is demonstrated in the context of non-parameterized and in particular
parameterized problems. The impact of the hyper-parameters in FBOAML is investigated in this
work. The comparison with other adaptive sampling methods is also illustrated. The numerical
results demonstrate important gains in terms of accuracy of PINNs with FBOAML over the
classical PINNs with non-adaptive collocation points. We also apply FBOAML in a complex
industrial application involving coupling between mechanical and thermal fields. We show that
FBOAML is able to identify the high-gradient location and even give better prediction for some
physical fields than the classical PINNs with collocation points taken on a pre-adapted finite
element mesh.
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(a) Relative L2 error (b) Number of collocation points (c) Cost function during the training

Figure 1: Parameterized Burgers equation (i.e. the viscosity ν is varied and is considered as
an input of PINNs): comparison of classical PINNs and PINNs with FBOAML. The curves
and shaded regions represent the geometric mean and one standard deviation of five runs. In
(a) the zone in gray is the learning interval for ν (interpolation zone). In (b) the number of
collocation points for each ν in FBOAML can be varied, however the total number of collocation
points remains the same. In (c) FBOAML needs less iterations to meet the stopping criteria.
The classical PINNs minimize the cost function better since the collocation points are fixed
during the training, which leads to over-fitting on the training points. While with FBOAML,
after every certain number of iterations, the collocations points are adaptive, which leads to the
jumps in the cost function.
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Abstract

Sensitivity analysis (SA) studies how changes in the input of a model affect the output. It
answers what-if questions, i.e., what happens to the solution of the model if the input param-
eters change [6]. This task can be performed in many different ways, depending on the nature
of the model considered. The present study focuses on sensitivity analysis of incompressible
Navier–Stokes equations using the polynomial chaos method (PCM).
Let Ω denote an open bounded subset of R2, the incompressible Navier-Stokes system with
homogeneous Dirichlet boundary conditions for this domain are

∂tu0(x, t)− ν∆u0(x, t) + (u0(x, t).∇)u0(x, t) +∇p0(x, t) = f0(x, t) Ω, t > 0,

∇.u0(x, t) = 0 Ω, t > 0,

u0(x, 0) = 0 Ω, t = 0,

u0(x, t) = 0 on Γ = ∂Ω, t > 0.
(1)

where u0 = (ux, uy) is the velocity, p0 the pressure, f0 the external force.
The PCM provides the treatment of a large variety of stochastic variables that can be described
by probability density functions (PDF). Each stochastic variable of the model is described as
a linear combination of stochastic modes. The modes are generally orthogonal polynomial
functions of standardized random variables with known statistical properties. Assume that
a ∼ N (µ, σ2) is the uncertain parameter, and let Y (x, t; a) be a physical variable, i.e., the hori-
zontal or vertical velocity, or the pressure.

The PCM, the uncertain variables can be decomposed on a basis of complete orthogonal poly-
nomials, the so-called polynomial chaos expansion (PCE) [3], [4]. E.g. Y (x, t; a) can then be
expressed by its PCE

Y (x, t; a) =

n∑
i=0

Yi(x, t)ψi(a). (2)

1
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The unknown Yi are deterministic coefficients and represent the random mode i of the physical
variable component Y , and ψi are the orthogonal polynomials of degree i. The first order
sensitivity equations, referred to as the sensitivity equations in short, are:

∂tũ1(x, t)− ν∆ũ1(x, t) + ũ0(x, t).∇ũ1(x, t) + ũ1(x, t).∇ũ0(x, t)

+ 2σũ1(x, t).∇ũ1(x, t) +∇p̃1(x, t) = f̃1(x, t) Ω, t > 0,

∇.ũ1(x, t) = 0 Ω, t > 0,

ũ1(x, 0) = 0 Ω, t = 0,

ũ1(x, t) = 0 on Γ, t > 0.

(3)

where u0 is the solution of Eq. (1) and ũ0 = u0 − σũ1. The first order senstivity velocity and
pressure are u1 = σũ1 and p1 = σp̃1 respectively, and f̃1 is the sensitivity external force.
First, a stability estimate is provided for the Navier Stokes system and for its sensitivity system
(3). The state and the sensitivity systems are discretized based on a Finite Elements Volumes
Method (FEVM) [5, 7]. We provide a stability estimation for the discrete sensitivity of the
Navier Stokes system. This numerical scheme is integrated into the open-source numerical fluid
mechanics simulation software called “TrioCFD” [2] promoted by CEA.
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Abstract

We consider the problem of state estimation from a finite number of linear measurements, where
the state u(ξ) to recover is the solution of a parameterized partial differential equation for an
unknown parameter ξ. A variational approach called PBDW and based on linear model order
reduction (MOR) was proposed in [3]. This approach relies on the assumption that the solution
manifold M := {u(ξ) : ξ ∈ P} can be well approximated by a low-dimensional linear subspace
V , which can be constructed by, e.g., proper orthogonal decomposition or greedy algorithms.
The state is approximated by a linear combination of an element in V and a correction term in
a space related to the linear measurements. Given m linear measurements, the dimension of V
is bounded by m and the approximation error related to the contribution in V is therefore lower
bounded by the Kolmogorov m-width

dm(M) := inf
dim(V )=m

sup
v∈M

∥v − PV v∥. (1)

Thus, when only a small number of measurements are available, the PBDW is not adapted to
problems where dm(M) has a slow decay with m. This can be circumvented by using non linear
reduced order models, such as the multi-space approach from [2], where the authors proposed an
online model selection of a linear space using a residual-based surrogate distance to the manifold
as selection criterion.

In this paper, we propose two contributions inspired from [1]. Firstly, we propose a randomized
surrogate distance to manifold for model selection, allowing to estimate the residual-based dis-
tance with a low online cost while preserving robustness to round-off errors, which can be an
issue for classical residual norm estimation. Secondly, we propose a dictionary-based approach
for state estimation, which is a nonlinear approach that has shown several advantages over other
linear and nonlinear methods in model order reduction. For a (unknown) parameter value ξ,
we use as background space a low dimensional space V (ξ) spanned by vectors from a dictionary
DK of rather large size K. Those vectors may be for example snapshots associated with random
parameter values, or parameter values selected by a greedily algorithm. The selection of V (ξ)
is based on a least-squares formulation of the original PBDW formulation with ℓ1 (sparsity-
inducing) regularization. Finally, we propose two ways to select the regularization amplitude:
a classical offline selection on some training set of snapshots, and an online selection using a
randomized surrogate distance to the manifold as in [2]. Figure 1 shows good performances of
our approach on a simple numerical example.

1
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Figure 1: Dictionary-based state estimation applied to the thermal block problem parameterized by
the thermal conductivity of the different subdomains (left). Sensors are located on a grid of m = 64
points. On the right, we compare our approach to the classical PBDW (red) using the best truncated
POD modes as background space, on a test set of 100 snapshots. We distinguish the offline (blue) and
the online (cyan) model selection of the regularization parameter.
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Abstract

Road traffic accounts for a significant part of air quality damage in urban areas and thus repre-
sents a major threat to public health, since the population living in cities is expected to increase
in the future. The recent field of urban physics uses numerical simulations and experimental
outdoor/wind-tunnel measurements to better understand the physics of pollutant dispersion.
Numerical simulations traditionally rely on fast-response low-fidelity models such as Lagrangian
approaches, Gaussian plume models and street-network models. These models are fast and
enable efficient decision-making for large scale urban domains (such as entire cities) but the
increasing computational capabilities of modern hardware now allow the use of high-fidelity
methods such as computational fluid dynamics (CFD). Different fidelity levels exist within CFD
methods : solving only for the time-averaged flow field (Reynolds-averaged Navier-Stokes, or
RANS) or capturing the transient turbulence dynamics (Large-eddy simulation, or LES) come
at different computational costs and rely on specific numerical methods. RANS methods were
extensively used for pollutant dispersion simulation and also to construct metamodels for uncer-
tainty propagation and bayesian inversion [7, 8]. On the other hand, traditional LES methods
remain very costly to be used for uncertainty quantification (UQ) studies. However, the re-
cently developed Lattice-Boltzmann method (LBM) [2] now stands as a credible alternative to
traditional LES in terms of computational cost and accuracy.

Growing attention is devoted to the study of epistemic and aleatory uncertainties in expensive
numerical simulations. However, to our knowledge no one in the literature has yet studied
microscale traffic-related urban pollutant dispersion while accounting for aleatory uncertainties
associated to meteorological inputs and traffic emissions. Existing UQ studies focus on global
scale simulations with fast-response models applied to traffic emissions [4] or on local point-
source pollutant release with RANS [3]. Yet, high-fidelity simulations could be used to compare
meteorological and traffic-related uncertainties with each other at the local scale and help decide
whether or not to include them in future studies.

In this work, we use an enhanced LBM open-source code coupled with a traffic simulator and
a physical engine emissions model to simulate traffic-related pollutant dispersion at the urban
neighbourhood scale [6]. The simulation of 10 minutes of physical time is of the order of 6

1



MASCOT-NUM 2023 April 3–6, Le Croisic, France

to 8 hours on 960 cores, which remains costly but is a considerable cost reduction compared
to traditional techniques. Thus, we use proper orthogonal decomposition (which can be seen
as a deterministic version of the Karhunen-Loève decomposition) along with gaussian processes
(POD-kriging or POD-GP) [1] to construct response surfaces for spatial time-averaged pollutant
concentration fields in a realistic urban setting, simulated with the LBM solver (see fig. 1). We
also compare this technique with a metamodeling method based on an anchored ANOVA (c-
ANOVA) decomposition of the quantity of interest, which was initially designed to reduce the
number of expensive simulation calls [5]. Our final objective is to carry out a global sensitivity
analysis with 5 uncertain variables: 2 for the meteorological inputs and 3 for the traffic emissions.

Figure 1: Study on an urban neighbourhood in the greater Paris area. Top: computational
domain with instantaneous road traffic-related pollutant concentration iso-contours with the
wind coming from the left ; the quantity of interest (QOI) is the time-averaged concentration
⟨χ⟩ level [g/m3] in a horizontal plane 1 meter high above the ground. Bottom, from left to
right: QOI sample mean and first order Sobol’ indices for incoming time-averaged wind speed
and wind direction ; U∞ and θ vary uniformly in [6; 10] m/s and [−0.2;+0.2] rad respectively.
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Abstract

In transportation research, few studies are focusing on aircraft trajectories. One reason is the
irrelevance of the usual statistical frameworks to achieve so.

An adapted framework to study trajectories is the one of Functional Data Analysis (FDA),
popularised by [10] and [2]. FDA is an active field of statistics as highlighted by the development
of inference procedures by [3], or more recently, by the blooming of the curve registration
geometric framework of [11].

The promotion of FDA to study aircraft trajectories was early made by [8]. The statistical liter-
ature focusing on aircraft trajectories revolves around Functional Principal Component Analysis
(FPCA) carried out by [7] and is applied to the detection of atypical energy behaviours by [4].

The first step of most FDA studies is to reconstruct the continuous realisations from the raw
discrete data (it is the so-called dense framework as opposed to the sparse one).

A smoothing approach has prevailed in the literature following the work of [9] and [10] and was
viewed as a pre-processing step. A review of four popular non-parametric techniques is given
by [13].

Given operational concerns, it is often valuable to consider so-called augmented trajectories,
that is to say trajectories for which weather dimensions are added, for example the wind speed
and direction.

1 Kriging for augmented trajectories

Most weather data come as a set of regular grids indexed by time. Matching the usual dimensions
of a trajectory (longitude, latitude, altitude) with weather data is never perfect but uncertainties
can be taken into account. Kriging is especially popular in geostatistics and have been extended
to the spatio-temporal framework [6]. Using kriging equations allow to predict the weather
values at the non-observed points at which the aircraft has flown. It is the first objective of the
poster.

1
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2 Co-kriging models

When trajectories are viewed as open parametrized curves of Rn, co-kriging models can be used
to reconstruct trajectories taking into account uncertainties. Co-kriging refers to extension of
the kriging model for multivariate functions, as pinpointed by [5]. It was first developed in
geostatistics [1] [12]. The second objective of the poster is to assess if co-kriging can be used to
recontruct aircraft trajectories which has not been done in the past.
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My background revolves around Statistics and Econometrics (Master’s degree at Toulouse School
of Economics, Magistère diploma at Université Paul Sabatier (Toulouse), apprenticeship at
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entitled Statistical Modeling of Plane Trajectories for Classification and Prediction.
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Abstract

Inverse problems are encoutered in many applications whenever one search for information
about a physical system based on measurements [7]. The Bayesian inference is an attractive
approach for solving such type of problem since it provides a full estimation of the unknown
parameters distributions. However, the convergence of the posterior distribution sampled with
Markov Chain Monte–Carlo (MCMC) [1] can be difficult to reach especially when dealing with
a high-dimensional search space.

In this work, we are interested in estimating a physical field by using a set of undirect observa-
tions. In order to accelerate the MCMC sampling, the forward model predictions are replaced
by surrogate models based on polynomial chaos (PC) expansions [8, 2]. In order to reduce the
input dimension of the surrogate model, a parsimonious representation of the field is introduced
by means of the Karhunen-Loève (KL) decomposition, considering that the field of interest is
a particular realization of a Gaussian random field. The interest of this decomposition is to
entirely characterize a random field by a low-dimensional set of parameters, namely its mean,
its autocovariance function, and its coordinates [3]. In particular, the decomposition basis is
obtained by solving the eigenvalue problem related to the given autocovariance function. In
practice, the autocovariance function depends on hyperparameters that are often fixed a priori.
We propose here another approach that consists in inferring the hyperparameters during the
MCMC sampling. The interest of this approach is twofold: i) to allow a weak parametrization
of the field and ii) to avoid overconfident results.

Since the hyperparameters are inferred, their values change from one MCMC step to another,
inducing a change of basis for the KL decomposition, as well as a strong nonlinear dependency
of the PC expansions to the hyperparameters. In [6], a method has been proposed to avoid
this dependency and therefore to mitigate the construction cost of the surrogate model. The
idea is to rely on a reference basis that does not depend on hyperparameters. This basis is
obtained by solving the eigenvalue problem averaged with respect to the hyperparameters prior
and is used to perform a change of coordinates. Despite the efficiency of this method, several
drawbacks are raised in [6, 4]. In particular, the change of coordinates requires to solve a new
eigenvalue problem at each MCMC step, which turns out to be expensive. An attempt to use
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a surrogate model for the eigenelement computation was not convincing due to non-smooth
hyperparameters dependency [4].

Our contribution to alleviate this difficulty is to redesign the change of coordinates to a change
of measure. In this new method, the coordinates of the field in the reference basis become
Gaussian centered distributed, with a covariance matrix that depends smoothly on the hyper-
parameters and does not require to solve the eigenvalue problem at each step. This change of
measure method is applied to a seismic tomography problem, where we infer a seismic wave
velocity field with the first-arrival traveltimes at given locations. This application to a con-
tinuous velocity model generalizes the work on a layered velocity model realized in traveltime
tomography [5]. More realistic predictions than when fixing the hyperparameters at constant
values are obtained. Moreover, this method allows for various field shapes, while keeping the
implementation computationally tractable.
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[4] A. Siripatana, O. Le Mâıtre, O. Knio, C. Dawson, and I. Hoteit. Bayesian inference of spa-
tially varying manning’s n coefficients in an idealized coastal ocean model using a generalized
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[6] I. Sraj, O. P. Le Mâıtre, O. M. Knio, and I. Hoteit. Coordinate transformation and polyno-
mial chaos for the bayesian inference of a gaussian process with parametrized prior covariance
function. Computer Methods in Applied Mechanics and Engineering, 298:205–228, 2016.

[7] A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation, volume
xii. 01 2005.

[8] N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4):897–936,
1938.

2



MASCOT-NUM 2023 April 3–6, Le Croisic, France

Robust calibration of a hydrological model with stochastic

surrogates
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Abstract

Misspecifying external forcings (such as rain) on a hydrological model can directly affect sub-
sequent parameter calibrations. Indeed, by using classical calibration and problem inversion
methods, the error in the external forcings is propagated to the model output, and then, if not
treated correctly, this error is compensated by overcalibrating the model parameters. As a con-
sequence, parameter values that were found optimal for one value of the external forcings, are
not granted to be optimal for another one. Ideally however, estimated parameter values (that
describe time-invariant soil properties) should be the same no matter the value of the external
forcing.

Figure 1: The influence of stochastic external forcings U(ω) on the calibration. The aim is to estimate
the parameter θ0 that minimizes the distance between model simulations M and terrain observations
yobs. This distance is quantified through a cost function J(θ0, U(ω)). However, the cost function depends
on the realization of the random variable U(ω), hence its minimizer θ∗ does too. The aim of robust
calibration is to annul this dependence.

Robust calibration was proposed to reduce the dependence of the estimated parameter values
on the external forcings [3]. The aim of robust calibration is to propose parameter estimators
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which are satisfactory over a large set of values of the external forcings. We model the external
forcing (here, the rain) as a random variable, and want the estimated parameter to be ”optimal
enough” over a set of probable values of the random variable. We will be interested in the
following robust estimators: the minimizer of the mean of the cost function, the minimizer of
its variance, and the Pareto front of these two objectives.

As robust calibration is difficult to apply on distributed hydrological models, mainly due to
their high dimension and computational cost, we use a surrogate model for the cost function.
The stochastic surrogate for the cost function is constructed as proposed in [1]. Indeed, in a
context where rain forcings are considered stochastic, the cost function to be minimised in the
calibration setting is itself stochastic, Figure 1. Furthermore, this approach is non-intrusive
as the structure of the stochasticity in the rain is never used, only an external stochastic rain
simulator is needed.

We present the robust calibration of the PESHMELBA [2] distributed, process based, hydro-
logical pesticide transfer model used for the simulation of pesticide fate on small agricultural
catchments. The case study is a small virtual catchment in the Beaujolais region. Here, we
focus on the calibration of two parameters, the soil content at saturation in deep soil layers,
and the Van Genuchten infiltration parameter. Our results confirm the interest of the robust
approach. Indeed, we show that the estimated parameters satisfy a larger set of rain realizations
than when compared with the classic calibration of PESHMELBA for the same rain errors.
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Abstract

We establish a diffusion approximation theorem for the Chatterjee estimator of the Sobol’ indices
of first order (see [3] for a definition). This kind of estimator has been proposed by Chatterjee in
[1]. It allows the estimation of conditional quantities using only a single sample. Indeed, classical
procedures, such as the so-called Pick-Freeze method [4], needs more than a single sample.

A first central limit theorem is proposed in [1], under restrictive assumptions of independence.
Several generalizations are discussed in [2]. Nevertheless, the vast majority of these works
assume independence between the input and the output. More recently, Lin & Han [5] get rid
of the independence hypothesis, using the tool of Hájeck projection. It is the first work of that
kind.

In our work, we get a diffusion approximation of the estimator. Our result improves the previous
central limit theorems, providing a general approximation along the sampling time. Further-
more, we deal with the multivariate input case, without independence assumptions between
inputs and outputs.
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Abstract

Predicting properties of materials and macroscopic physical systems in the framework of sta-
tistical physics [1], or obtaining the distribution of parameter values for Bayesian inference
problems [2], both rely on sampling high dimensional probability measures. Popular methods
rely on stochastic dynamics, in particular Markov Chain Monte Carlo (MCMC) methods. We
focus on the overdamped Langevin dynamics, defined on a d-dimensional configuration space Q,
which are ergodic with respect to the Boltzmann–Gibbs distribution

dµ = Z−1e−βV (q)dq, Z =

∫
Q

e−βV < +∞, (1)

where V ∈ C∞(Q) and β > 0. The overdamped Langevin dynamics are the following stochastic
differential equations

dqt =
(
−D(qt)∇V (qt) + β−1divD(qt)

)
dt+

√
2β−1D(qt)

1/2dWt, (2)

where D(qt) ∈ Rd×d is a symmetric positive definite matrix, D1/2 is defined by spectral cal-
culus, and divD is the vector whose i-th component is the divergence of the i-th column of
the matrix D = [D1, . . . ,Dd], i.e. divD = (divD1, . . . ,divDd)T. Dynamics such as (2) are
then discretized to create a Markov chain that samples (1) (up to a bias related to the time
discretization error, and which can be cancelled using a Metropolis–Hastings correction). The
convergence of MCMC methods may however be quite slow because the target measure is typ-
ically concentrated on a few high probability modes separated by low probability regions. A
convenient choice usually made in (2) is to set D(qt) = Id for all qt ∈ Q. However, this may not
be optimal, as the rate of convergence towards (1) is related to the spectral gap of the operator
of the dynamics (2)(see for instance [3]), which is parameterized by the diffusion coefficient D.

Our objective is to compute, explicitly or numerically, the optimal diffusion function leading
to the largest spectral gap, and thus to the fastest convergence rate. In particular, we discuss
the normalization of the diffusion coefficient, since a too large diffusion coefficient has to be
compensated by very small time steps. We formalize the maximization of the convergence rate
of the overdamped Langevin dynamics (2) with respect to the diffusion coefficient D as a convex
optimization program, and we show its well-posedness. We also propose in low dimensional sce-
narios a numerical procedure combining a finite element parameterization and an optimization
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(a) Optimal diffusion obtained numerically, opti-
mal diffusion in the homogenized limit, constant
diffusion and target probability measure.

(b) Mean squared displacement averaged over 103

simulations for the three diffusion coefficients.

Figure 1: Numerical results for the optimization procedures for Q = T (one-dimensional torus),
V (q) = sin(4πq)(2 + sin(2πq)) under L2 constraints on the diffusion coefficients.

algorithm, to compute the optimal diffusion in practice. The numerical procedure is illustrated
on simple one-dimensional examples which show the benefits of having a position-dependent dif-
fusion coefficient, see Figure 1. All the methods are provided in an open source Python and Julia
code available at https://github.com/rsantet/Optimal_Overdamped_Langevin_Diffusion_
Python and https://github.com/rsantet/Optimal_Overdamped_Langevin_Diffusion_Julia.
We also study the behaviour of the optimal diffusion in the homogenized limit and show it has
an analytical expression, proportional to the inverse of the target density, which is in accordance
with various previous heuristics (see for example [4]). This simple limiting behaviour can be
used as an initial guess in an optimization algorithm, or as a proxy for the optimal diffusion
which does not require costly convex optimization procedures.
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Abstract

In recent decades, there has been a strong trend toward sustainable and environmentally friendly
energy production. Wind energy, especially in offshore wind farms, has emerged as a promising
candidate to meet this need [3], attracting attention and investments from both the academic
and industrial research communities. However, the design of wind turbines remains challenging
due to the need for costly simulations and the high uncertainties in environmental conditions.

Simulation-based cost-effective design of complex systems under uncertain conditions has been
extensively studied in the engineering literature. Many state-of-the-art approaches use a small
number of simulator outputs to train surrogate models (or emulators) that can accurately ap-
proximate one or more quantities of interest from the full simulator at a relatively low computa-
tional cost. As of today, however, most of these surrogates can only deal with time-independent
problems. To model dynamical systems, a special class of models has been developed, namely
that of non-linear autoregressive models with exogenous inputs (NARX). NARXs take time se-
ries inputs and return the corresponding dynamic system response as output. These models can
capture temporal dependencies in the data by combining their auto-regressive predictions with
the exogenous input time series to predict one or more future time steps. However, they tend
to be highly susceptible to the curse of dimensionality.

Wind turbine simulators require a detailed parametrization of the wind input, also known as
a turbulence box, hence falling into the class of time-dependent systems with high-dimensional
inputs. The turbulence box v : T → R3×νy×νz itself is often represented as a multi-dimensional
random field indexed by a discrete time axis T . At every time step it consists of a longitudinal,
transverse and upward wind velocity at each point on the spatial grid of size νy × νz. An

accurate surrogate of this dynamical behaviour M̃ must therefore be able to approximate any
simulator output fi : T → R of the simulator M as a function of v, up to and including time t:
fi(t) = M(v(≤ t)) ≈ M̃(v(≤ t)).

To tackle this challenge, we have developed a novel surrogate modelling approach that combines
spectral compression techniques and NARX. This new algorithm, which we call manifold NARX
(mNARX) [1], first reduces the spatial components of the turbulence box to a small number
of time-dependent spectral coefficients. These coefficients are then used to construct NARX
models of simple auxiliary quantities related to the physics of the system. We then combine the
original coefficients and the auxiliary quantities to form an exogenous input manifold, which
allows us to use NARX and predict the final quantities of interest.

This incremental approach achieves a high prediction accuracy over long time horizons even when
trained on a small experimental design. However, its ability to predict extreme values, e.g. peak
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Figure 1: Maximum value of the bending moment at the blade root extracted from the simulator
output MBld

y and that from the surrogate prediction M̂Bld
y . The results of the original mNARX

are shown in blue, while the results of the modified mNARX are depicted in orange.

loads, within a simulation or across multiple simulations is highly dependent on the training
data and strategy. To mitigate this problem, we extended the original mNARX algorithm in
two different ways. First, we divide the original simulations into segments of shorter duration,
which we classify based on the average velocity of the corresponding turbulence box section.
Second, we subsample from the training data to ensure uniform coverage of the entire output
quantile space. For each class, we then train a dedicated mNARX model.

In Fig. 1, we compare the emulated peak blade root bending moment MBld
y from the original

mNARX and the modified mNARX. Both surrogates were trained using 100×600 s simulations
and validated using an out-of-sample validation set of 900 simulations. The updated mNARX
clearly provides a more accurate prediction of the peak moments, in particular for the higher
quantiles of the peak moment.

To further improve mNARX, we will use the recently developed DRSM algorithm (dimensional-
ity reduction for surrogate modelling) [2] to automate the construction of the NARX models, by
optimizing the dimensionality reduction, subsampling and classification steps, making it more
accessible to a less specialized audience.
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[3] T. Tröndle, J. Lilliestam, S. Marelli, and S. Pfenninger. Trade-offs between geographic
scale, cost, and infrastructure requirements for fully renewable electricity in europe. Joule,
4(9):1929–1948, 2020.

2



MASCOT-NUM 2023 April 3–6, Le Croisic, France

Sparse Bayesian learning for rational polynomial chaos

expansions

F. Schneider†,1, I. Papaioannou§,2, G. Müller§,1,

† PhD student (presenting author). § PhD supervisor

PhD expected duration: Nov. 2019 – Dec. 2023

1 Chair of Structural Mechanics, Technical University of Munich
{felix.w.schneider,gerhard.mueller}@tum.de

2 Engineering Risk Analysis Group, Technical University of Munich

iason.papaioannou@tum.de

Abstract

1 −50
0

−40

−20

0

Model input λ ℜ(h)

ℑ
(h
)

Figure 1: Graphical comparison between the
approximation accuracy of standard PCE (—)
and rational PCE (—) based on 15 samples (•)
of the model h(λ) = (λ− 1 + i0.02)−1 , where
λ is log-normally distributed. The PCE is built
with polynomial order m = 5, rational PCE
with mp = mq = 1.

Surrogate models enable efficient propagation of
uncertainties in computationally demanding mod-
els of physical systems. In linear structural dy-
namic models, the system response can be de-
scribed by the frequency response function. We
employ surrogate models that draw upon poly-
nomial bases to model the stochastic response of
structural dynamics systems. Specifically, in [2] we
proposed a rational approximation that expresses
the system frequency response as a rational of two
polynomials with complex coefficients.

The inclusion of a denominator polynomial is mo-
tivated by the slow convergence of standard linear
polynomial chaos expansion surrogate models for
frequency response models. The rational surrogate
structure is especially suitable for the representa-
tions of frequency response functions as they are
mappings of rational form. To estimate the coef-
ficients of the approximation, a non-intrusive re-
gression approach that can be coupled easily with
existing deterministic solvers was introduced. A comparison between standard and rational PCE
in the approximation of a rational function on a one-dimensional input λ is given in Fig. 1.

However, to accurately estimate all coefficients of the polynomials in the numerator and the
denominator, a large number of system evaluations is required in order to avoid overfitting.
This is especially critical in high dimensional problems where the number of coefficients becomes
excessively high. In order to extend the applicability of the proposed surrogate model to higher
dimensional problems, we introduced a sparse learning approach that retains only the polynomial
terms that contribute significantly to the predictability of the surrogate in [1]. In particular, we
employ a sparse Bayesian learning approach with a hierarchical prior construction that follows
the formalism of the relevance vector machine approach in [3]. Due to the rational form of
the surrogate model, the problem becomes non-linear in the denominator coefficients and a
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Figure 2: Illustration of the hierarchical Bayesian model for the rational PCE from [1]. Coefficients
p and q are modeled through complex Gaussian distributions with precision parameters αp and αq,
which are again assigned Gamma distributions in order to induce sparsity into the model.

closed form solution for the coefficients is no longer available.. To circumvent this problem, we
first find the posterior distribution of the numerator coefficients conditional on the denominator
coefficients and all hyperparameters. Subsequently, we approximate the posterior distribution
of the denominator coefficients through a Dirac at the maximum-a-posteriori (MAP) estimate
of the denominator coefficients. We employ a gradient-descent algorithm to find the MAP
estimate of the denominator coefficients and derive the necessary gradients analytically using
CR-calculus. On the basis of this MAP approximation, the optimal hyperparameters are found
through maximizing the marginal likelihood. To accelerate convergence, we apply a pruning of
the coefficients following the algorithm of [3]. The method is able to approximate the original
model response accurately while using a low number of data samples. Thereby, the performance
is improved in comparison to the previously proposed least squares approach. In an extension of
the method we investigate further pruning and basis selection strategies, e.g., based on the fast
marginal likelihood maximization algorithm in [4]. We compare the performance and accuracy
of the methods on algebraic and finite element models of structural dynamic problems.
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Abstract

We consider the task of estimating functions from a restricted number of observations where
the inputs are in the form of varying-size sets of vectors. A classical method in this expensive
functions context is to approximate the true expensive function with a Gaussian process that
relies on semi-definite positive kernels.

Varying-size sets of vectors have some peculiar characteristics : the number of vectors is not fixed
and the vectors are not ordered. These properties prevent the use of classical, fixed dimension,
kernels.

Sets of vectors can be represented as probability distributions or as vectors composed of well-
chosen characteristic features. The distribution associated with each set of vectors can be either
a (non-informative) discrete uniform distribution supported by the points of the set, or an
empirical Gaussian distribution characterized by a mean and a covariance matrix estimated
from the vectors of the set as in [5].

With this representation, we can define semi-definite positive kernels between distributions or
vectors. The kernels can be classified into explicit ones, with known feature map and scalar prod-
uct, and implicit kernels where the feature maps and the scalar product come mixed together.
For implicit kernels, we restrict ourselves to distance substitution kernels with an exponential
form. It is known that this approach for constructing kernels requires the substitute to be con-
ditionally semi-definite negative, see [1]. In this context, it is necessary and sufficient to have an
Hilbertian metric (isometric to a L2 norm) [4]. The distances between distributions verifying the
latter condition which we consider are the sliced Wasserstein distance [3], the maximum mean
discrepancy, the approximated Gaussian Wasserstein (see [2]), and the Euclidean distance for
vectors of features. For explicit kernels, we investigate the probability product kernel between
Gaussian distributions [5] and the scalar product of embeddings of discrete uniform laws.

The prediction performance of theses kernels are compared on three types of analytical functions.
The first ones mimic wind-farms productions for different winds, the second function is the inertia
of a set of vectors and the third is the maximin function, well-known in the design of experiments.
We first analyze the predictions over sets of vectors drawn uniformly over the same rectangular
search space. Afterwards, we investigate the predictions over sets of vectors modified through
geometrical transformations such as dilatation, rotation and translation. We show that some
geometrical properties of the wind-farm functions can be better learned by MMD-based kernels
than others. As an example, the MMD-based kernel prediction together with the true function
is represented in Figure 1.
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Figure 1: Left : Output of a function over a set. Right : MMD-based kernel prediction. 15
points were set at fixed positions and one had varying coordinates.
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Abstract

Uncertainty quantification is an objective that is pursued to control the performances or the
reliability of an industrial system. A complex simulation model can be viewed as a costly black
box function ϕ : X → R. Its input X is a continuous random vector defined on the domain
X ⊆ Rd and by its probability density function (PDF) fX . Its output Y is a random variable
such that Y = ϕ(X). One could be interested in assessing a given expectation of a particular
function τ of Y such as a mean or a probability of failure. The actual expectation EfX can be
estimated by Monte Carlo (MC) simulation:

EfX [τ (ϕ (X))] =

∫
X
τ (ϕ (x)) fX(x)dx ≈ 1

NX

NX∑
j=1

τ
(
ϕ
(
X(j)

))
, (1)

with X(j) i.i.d.∼ fX and NX the size of the MC sample. The input probabilistic model fX is
seldom known and may be deduced as a result of physical experiments [4]. In such a data
driven context [3], the knowledge of the input probabilistic model is restricted to a ND-sample

D̃ = {D(i), i = 1, . . . , ND} ∼ fD̃, defined on the domain D ⊆ Rd×ND , with D(i) i.i.d.∼ fX .

Realizations of D(i) are assumed to be obtained from costly experimental tests, thus inducing
a small-data context. The expectation that considers the fluctuations in the database can be
expressed as follows [1]:

Ef
(X,D̃)

[τ (ϕ(X))] =

∫
D

∫
X
τ (ϕ(x)) fX|D̃(x|d̃)fD̃(d̃)dx dd̃ (2)

≈ 1

N

N∑
k=1

1

NX

NX∑
j=1

τ
(
ϕ
(
X

(j)
k

))
(3)

where X
(j)
k

i.i.d.∼ f̂X|D̃k
and f̂X|D̃k

is the joint PDF estimate of the true PDF fX , built from the

database D̃k with k = 1, ..., N . The estimator is then subject to a bi-level uncertainty source.
The first level comes from the MC estimate whereas the second one comes from the identification
of the joint PDF.
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The main objective here is to assess the variance of the given estimator with respect to those
two sources of uncertainty in a small-data context. This variance can be reduced by increasing
the database and MC sample sizes, respectively ND and NX , i.e. by performing new physi-
cal experiments and running new simulations. Experimental tests and black-box evaluations
however have a non-negligible cost for complex industrial applications. Hence, it is desirable
to determine how the budget should be allocated: is it better to carry out new experiments or
perform new simulations to optimize the variance decrease ?

The proposed work thus focuses on the simulation and physical experiment trade-off. The
novelty of this contribution is to tackle this issue by means of a sensitivity analysis in order
to determine the contribution of each uncertainty source in the variance of the estimator. A
bootstrap resampling method is applied here to generate new databases D̃k and then to estimate
several PDFs f̂X|D̃k

. Sobol’ indices [5] are subsequently computed to guide the investment

between the experiment database or the MC sample. A multiple importance sampling method
[2] is implemented to allow a cost-free approach. The relevance of an enrichment in data guided
by sensitivity analysis is then illustrated on academic examples.
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Abstract

In hydrogeology, a flow simulator is considered as a practical tool to optimize injection-production
scenarios and evaluate the impact of the uncertainties of some model parameters on particular
quantities of interests (fluxes along internal boundaries, well flow rates...). This simulator im-
plements a numerical discretization of parameterized partial differential equations. For specific
case studies, it should be run for several values of the parameters, which induces costly compu-
tational efforts especially for large domains. Techniques like the reduced basis method [1, 4, 5, 6]
can significantly lower the overall simulation cost.

In this work, we evaluate the reduced basis method for a single phase flow model. Classically,
simulators implement the following linearized mass balance, where the fluid velocity is given by
Darcy’s law:


φ∂tp−∇.(Λ(∇p+ ρg∇z)) = q in (0, T )× Ω,

−Λ(∇p+ ρg∇z) · ν = 0 on (0, T )× ΓN,
p = pD on (0, T )× ΓD,

p(x, t = 0) = p0(x) in Ω,

(1)

where φ is the product of the porosity with the total compressibility, p the pressure, Λ is the
mobility tensor, ρ the mass density, g the gravity constant, z the depth and q the well flow rate
term. ν is the outer normal vector to the domain boundary ∂Ω = ΓD ∪ ΓN and T the total
duration of simulation. Let us note that φ and Λ vary across Ω.

ΓN
Λ1

Λ2Γint

Γint Γint
(S)

(2)

ΓD

ΓN
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ΓN

1

Figure 1: Typical domain configurations.

1



MASCOT-NUM 2023 April 3–6, Le Croisic, France

In this methodological study, we consider a rectangular domain Ω (see figure 1) composed of
two areas (a reservoir one and a cap-rock) with two different mobilities Λ1 and Λ2. As quantity
of interest, we take the flux s over the interior boundaries Γint given by

s = −
∫

Γint

Λ(∇p+ ρg∇z) · ν ds. (2)

We have to solve (1) and (2) at all time steps and for different values of Λ1 and Λ2. We construct
a reduced basis by means of a POD-Greedy algorithm as introduced in [3] and a goal oriented
error estimator as in [2]. We discuss numerical results that illustrate the methodology and the
efficiency of the a posteriori error estimate.
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Abstract

As part of the assessment of the seismic safety of industrial installations, seismic fragility curves
of mechanical structures are key quantities of interest for probabilistic seismic risk assessment
studies [1]. They express the probability of failure of the mechanical demand conditional to a
scalar value derived from the seismic ground motions, coined intensity measure.

Evaluation of these curves using Monte Carlo methods and mechanical numerical simulations
with artificial seismic signals is becoming common [2]. Nevertheless, in this context, when
resorting to a complex and detailed modeling, implying in addition a nonlinear behavior, the
number of data available is limited due to the calculation burden.

The Bayesian point of view allows more efficient learning conditioned on the prior distribution of
the parameters that can be assumed to constitute fragility curves. Indeed, in practice, fragility
curves are assumed to follow the c.d.f. of a log-normal distribution [1, 3, 4, 2]. Under a small
data-set, the choice of the prior has a non-negligible influence on the posterior distribution [5].
The proper choice of the prior probability distribution is thus of primary importance.

Non informative and objective priors are answers to this problematic and can be chosen as the
maximal or minimal arguments of some metrics [6], such as the expected mutual information
for which the optimum is asymptotically the Jeffreys prior w.r.t. the data-set size [7]. A study
of those and their application to the seismic fragility curves framework are the main purposes of
this PhD. We present an implementation of the Jeffreys prior under the usual log-linear probit
model for a posteriori simulations and estimations of seismic fragility curves (Figure 1). This
method is compared with other common methods in the literature.
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Figure 1: Fragility curves estimation using Jeffreys prior (on the left), and the classical maximum
likelihood estimator method (on the right). The resulting 95% confidence intervals for the fragility
curves of two data-set samples of different sizes (51 in blue and 101 in orange) are plotted. The
system studied is a single degree of freedom oscillator with a nonlinear restoring force (see [8]). The
considered model for the fragility curve is the log-linear probit with respect to the parameters α, β as
Pf (a) = Φ(β−1 log a

α
) where Φ is the c.d.f. of the standard Gaussian distribution.

of seismic fragility curves”. As I appreciated very well the subject and as its results led to
interesting and open questions we decided to pursue it further as a PhD thesis 1 year later,
financed by the CEA under the SEISM Institute (https://www.institut-seism.fr/en/).
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