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The use of complex computer models for the simulation and analysis of natural systems from physics,
engineering and other fields is by now routine. These models usually depend on many input variables.Thus,
it is crucial to understand which input parameter or which set of input parameters have an influence on
the output. This is the aim of sensitivity analysis which has become an essential tool for system modeling
and policy support. Global sensitivity analysis (GSA) methods considers the input vector as random and
propose a measure of the influence of each subset of its components on the output of interest. We refer to
the seminal book by Saltelli [13] for an overview on GSA or to [4] for a synthesis of recent trends in the
field. Among the different measures of GSA, variance-based measures are probably the most commonly
used. The definition of the so-called Sobol’ indices, introduced in [12] and later revisited in the framework
of sensitivity analysis in [14], is based on the Hoeffding decomposition of the variance [10]. More precisely,
for Y = f(X1, . . . , Xp) where the inputs Xi are assumed to be mutually independent, the Sobol’ index
with respect to X is defined by

SX = Var(E[Y |X])
Var(Y ) = E[E[Y |X]2]− E[Y ]2

Var(Y )

where X is a subvector of (X1, . . . , Xp).
In general, computing explicitly the theoretical value of SX is hopeless; therefore one of the main tasks
is to provide estimators of SX that have some nice convergence properties (consistency, explicit rate of
convergence. . . ). Many different estimation procedures were developped in the past decades to estimate
SX . Two classes of methods have emerged with nice theoretical convergence guarantees.

The first class is based on the so-called Pick Freeze (PF) design of experiments, the theoretical properties
of which (consistency, central limit theorem, concentration inequalities and Berry-Esseen bounds) have
been studied in [8, 11]. This method has very nice convergence properties and is very general since the
only assumption needed to prove a central limit theorem is that E[Y 4] < ∞. However, it requires the
evaluation of the model on a PF design that may be unvailable in practice. Also, the required sample size
increases linearly with the number of indices that one wants to estimate.

The second class of methods is based on nearest neighbors. In [6, 5], the authors built an estimator of
E[E[Y |X]2] based on two independent n-samples. The first one allows to estimate the regression function
E[Y |X = x] using the first nearest neighbor of x among the first sample and the second one is used as a
plug-in estimator. They proved a central limit theorem for their estimator for d 6 3. In [2], the author
introduced a new coefficient of correlation based on ranks for d = 1. This approach was then adapted
for building estimators of first-order Sobol’ indices in [7], with a central limit theorem in the framework
d = 1 and Xi not necessarily independent from Y . Broto et al. [1] also considered a nearest neighbor
approach to estimate Sobol’ indices of any order. The estimators they introduced are consistent but no
rate of convergence was provided. Although very powerfull it is clear thanks to the bias study in [5] that
it is not possible to obtain a central limit theorem for estimating Sobol’ indices of order larger than d = 3
using this approach. It is important to note that all the procedures based on nearest neighbors require
additional regularity assumptions to control the bias.



Close to nearest neighbor approaches are kernel methods. A natural estimator is the Nadaraya-Watson
plug-in estimator. The analysis of such estimators also require regularity assumptions on the model.
In this work, we develop an approach mentioned in [3, Remark 1]. It consists in extending the very
interesting point of view introduced in [9] to estimate general nonlinear integral functionals of a density on
the real line, by using empirically a kernel estimator erasing the diagonal terms. Relaxing the positiveness
assumption on the kernel and choosing a kernel of order large enough, we are able to prove a central limit
theorem for estimating Sobol’ indices of any order (the bias is killed thanks to this signed kernel).
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