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Abstract

Expensive-to-evaluate blackbox simulations play a key role for many engineering and industrial
applications. In this context, surrogate models have been widely used to adress a large range of
applications, e.g., aircraft design [9], deep neural networks [10], coastal flooding prediction [6],
agriculture forecasting [4] or seismic imaging [2]. In general, these blackbox simulations are
complex and may involve mixed-categorical input variables. Typically, an aircraft design tool
may need to consider variables such as the number of panels, the list of cross sectional areas or
the material choices. As a result, there has been a growing interest for mixed-categorical models
based on Gaussian process (GP) surrogates, particularly in the context of Bayesian optimization.

In this setting, several existing approaches use different strategies to handle mixed-categorical
variables. These approaches either use continuous kernels (e.g., continuous relaxation [3] and
Gower distance based [5] GP) or use a direct estimation of the correlation matrix such as the
Homoscedastic Hypersphere (HH) kernel [7]. To combine both approaches, we developed a
kernel-based approach that extends continuous exponential kernels to handle mixed-categorical
variables denoted Exponential Homoscedastic Hypersphere (EHH) kernel [8]. The proposed
kernel leads to a new GP surrogate that generalizes both the continuous relaxation and the
Gower distance based GP models.

However, the EHH and HH kernels significantly increase the number of hyperparameters related
to the surrogate GP model. Therefore, a second contribution addresses this issue by constructing
the surrogate model with fewer hyperparameters. The reduction process is based on the Partial
Least Squares (PLS) regression [1] which has previously been developed for the continuous
relaxation based GP [9]. We show how to generalize Kriging with PLS for the more general HH
kernel using an extension of the PLS regression to matrices.

We demonstrate, on both analytical and engineering problems, that our proposed GP models
give a higher likelihood and a smaller residual error than the other kernel-based state-of-the-art
models.

Our methods are available in the open-source software SMT.
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https://smt.readthedocs.io/
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