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Abstract

Coalitional decompositions of quantities of interest (QoI) are at the cornerstone of many machine
learning interpretability methods [8] and global sensitivity analysis (GSA) [3]. Whenever one
wishes to study the behavior of a black-box, input-output model, these decompositions allow
to extract insights, and to quantify importance in a particular way. Essentially, they allow to
decompose a statistical parameter related to a random output, which is assumed to be relevant
to the underlying uncertainty quantification study, into elements related to each coalition (i.e.,
subset) of inputs.

Traditionally, such decompositions are achieved using a “model-centric” approach: given a ran-
dom vector of d ∈ N∗ inputs denoted X = (X1, . . . , Xd)

⊤ ∼ PX , and a black-box model G, one
seeks to decompose the random output G(X) as the following sum:

G(X) =
∑

A∈P(D)

GA(XA), (1)

where P(D) denotes the power-set (i.e., the set of subsets) of D := {1, . . . , d}. A classical
example of QoI is the variance of the output, denoted V(G(X)). Provided that the inputs are
mutually independent, it leads to the variance coalitional decomposition:

V(G(X)) =
∑

A∈P(D)

VA, where VA =
∑
B⊆A

(−1)|A|−|B|V(E[G(X) | XA]),

which is nothing more than the Sobol-Hoeffding variance decomposition [6, 9].

However, one can adopt an “input-centric approach”, leveraging tools from combinatorics. It
relies on the fact that (P(D),⊆) forms a partially ordered set (poset), with a very particular
algebraic structure: it is isomorphic to a Boolean lattice [4]. Leveraging Rota’s extension of
the Möbius inversion formula [7] to posets leads to the following result, which can be seen as a
generalized Inclusion-Exclusion principle.

Corollary 1 (Möbius inversion formula on power-sets) Let φ and ψ be functions from
P (D) to an abelian group A. Then the following equivalence holds:

φA =
∑
B⊆A

ψB , ∀A ∈ P (D) ⇐⇒ ψA =
∑
B⊆A

(−1)|A|−|B|φB , ∀A ∈ P (D) . (2)

This result can be leveraged for coalitional QoI decompositions in the following way:
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• The QoI, represented by φD, can be valued in an abelian group (and not necessarilly R) ;

• Let φA, A ∈ P (D), be given. Then define ψA as the RHS of (2) ;

• Since the both sides of (2) are equivalent, it leads, in particular, to the coalitional decom-
position of φD as:

φD =
∑

A∈P(D)

ψA.

This approach is analogous to cooperative game theory [1], where the chosen value function is
φ, and the (ψA)A∈P(D) represent the Harsanyi dividends [5] of the cooperative game.

This input-centric approach allows to define decompositions for a broader range of QoIs and does
not require the inputs to be independent. Adopting this point of view leads to some remarkable
observations: “ANOVA-like” decompositions (e.g., variance, covariance matrix for multivariate
outputs, MMD-ANOVA [2]) from the GSA litterature can be recovered, and proved to hold even
if the inputs are not independent.

During this talk, the input-centric approach to coalitional decompositions is presented and dis-
cussed. Conditions for obtaining unambiguous and interpretable decompositions of very general
QoIs are presented. Its link with the traditional model-centric approach is discussed as well,
which paves the way towards the definition of theoretically suitable coalitional decompositions
whenever the inputs are not independent.
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