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Abstract

The use of ”physics-informed” Gaussian process regression (GPR) models has become more and
more popular since their introduction in the early 2000’. Some of these models in particular
aim to approximate functions u : D → R, where D ⊂ Rd is an open set, which are solutions of
a given homogeneous linear partial differential equation (PDE), i.e. an equation of the form

L(u) :=
∑
|α|≤n

aα(x)∂
αu = 0. (1)

Above, given α = (α1, . . . , αd)
T ∈ Nd, we denoted |α| := α1+. . .+αd and ∂α := (∂x1

)α1 . . . (∂xd
)αd .

Starting from (1), one models u as a realization of a Gaussian process (GP) U = (U(x))x∈D ∼
GP (0, ku) and draws the consequences of (1) on the kernel ku. For general linear operators, it is
expected that enforcing the linear constraints on the sample paths of U is ensured by enforcing
the linear constraints on the functions ku(x, ·). When U is a GP with n times differentiable
sample paths, [1] proves this property for some classes of differential operators.

In the standard PDE approach though, equation (1) is reinterpreted by weakening the definition
of the derivatives of u. It can indeed happen in practice, such as with hyperbolic PDEs, that the
sought solutions of the PDE L(u) = 0 are not n times differentiable; they are only solutions of
some weakened formulation of equation (1). We focus here on the distributional formulation of
the PDE (1), which relaxes the regularity assumptions over u to the maximum. Consider equa-
tion (1), multiply it by a compactly supported, smooth test function φ ∈ C∞

c (D) and integrate
over D. For each integral term

∫
D
φ(x)aα(x)∂

αu(x)dx, perform |α| successive integrations by
parts to transfer the derivatives from u to φ. Since φ ∈ C∞

c (D), this yields that

∀φ ∈ C∞
c (D),

∫
D

u(x)
∑
|α|≤n

(−1)|α|∂α(aαφ)(x)dx = 0. (2)

One only requires that u ∈ L1
loc(D), i.e.

∫
K
|u(x)|dx < +∞ for all compact set K ⊂ D, to make

sense of equation (2). We then say that u ∈ L1
loc(D) is a solution to L(u) = 0 in the distributional

sense if u verifies (2). Under the weak assumptions that U is a measurable centered second order
random field and that σ : x 7−→

√
ku(x, x) ∈ L1

loc(D), we prove in [2] that

P(L(U) = 0 in the distrib. sense) = 1 ⇐⇒ ∀x ∈ D,L(ku(x, ·)) = 0 in the distrib. sense. (3)

This extends results from [1], and comes in handy for understanding GP models for PDEs.
As a prototype for hyperbolic PDEs, we examine the following wave equation in R3. Denote
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∆ = ∂2
xx + ∂2

yy + ∂2
zz the three dimensional Laplacian and consider the following PDE( 1

c2
∂2
tt −∆

)
u = 0, (x, t) ∈ R3 × R∗

+, (4)

given the initial data u(x, 0) = u0(x) and (∂tu)(x, 0) = v0(x). Its distributional solution u is

u(x, t) = (Ft ∗ v0)(x) + (Ḟt ∗ u0)(x), ∀(x, t) ∈ R3 × R+. (5)

Above, Ft and Ḟt are not functions but distributions in the sense of L. Schwartz. Equation
(5) can be expressed as convolutions over the unit sphere S(0, 1); this is the Kirschoff formula.
From this formula, one sees that when u0 and v0 are not smooth enough (e.g. u0 is of class C1

and no more), u is not of class C2 and thus does not verify the PDE (4) pointwise.

Suppose now that u0 and v0 are realizations of two independent GPs U0 ∼ GP (0, k0u) and V0 ∼
GP (0, k0v). We show in [2] that u in equation (5) is then a realization of a GP U ∼ GP (0, ku),
whose kernel can be expressed in a compact way with tensor products and convolutions:

ku((x, t), (x
′, t′)) = [(Ft ⊗ Ft′) ∗ k0v](x, x′) + [(Ḟt ⊗ Ḟt′) ∗ k0u](x, x′). (6)

We next show that the right-hand side of (3) is verified for ku and thus the realizations of
U verify the wave equation in the distributional sense, though not pointwise in general. The
kernel (6) can then be used for GPR on pointwise observations of a solution u of (4). In
particular, evaluating the corresponding Kriging mean mK(x, t) or its time-derivative at t = 0
provides a reconstruction of u0 and/or v0. Figure 1 shows an example of such a reconstruction.
Additionally, physical parameters such as the velocity c or the source position parameters can be
viewed as hyperparameters of the kernel (6) and estimated via marginal likelihood optimization.
Interestingly, for point sources, this method for estimating the source position naturally reduces
to the triangulation method used in GPS systems (Figure 2). We detail these examples in [2].
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Figure 1: Reconstruction of an initial speed
v0 using kernel (6) on a slice z = Cst.

Figure 2: Level sets of the negative log
marginal likelihood, as a function of the
source position, in the point source limit.
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